Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium periodate

Palfray and Sabetay246 added an emulsifying agent, Gardinal, to aid in the oxidation of the water-insoluble 1-0-benzylglyceritol. Aqueous solutions of methanol,247 248 ethanol,13 - 249-261 dioxane,74 - 262 266 acetic acid,230 - 266 and acetic acid buffered with lithium acetate164 have been used. The use of lithium periodate or triethylammonium periodate in aqueous alcohol solution has been suggested,267 because of the solubility of these salts in this medium. [Pg.30]

The properties of the head element of a main group in the periodic table resemble those of the second element in the next group. Discuss this diagonal relationship with particular reference to (a) lithium and magnesium, (b) beryllium and aluminium. [Pg.158]

To meet the needs of the advanced students, preparations have now been included to illustrate, for example, reduction by lithium aluminium hydride and by the Meerwein-Ponndorf-Verley method, oxidation by selenium dioxide and by periodate, the Michael, Hoesch, Leuckart and Doebner-Miller Reactions, the Knorr pyrrole and the Hantzsch collidine syntheses, various Free Radical reactions, the Pinacol-Pinacolone, Beckmann and Arbusov Rearrangements, and the Bart and the Meyer Reactions, together with many others. [Pg.585]

The stability of the various cumulenic anions depends to a large extent upon the nature of the groups linked to the cumulenic system. Whereas solutions of lithiated allenic ethers and sulfides in diethyl ether or THF can be kept for a limited period at about O C, the lithiated hydrocarbons LiCH=C=CH-R are transformed into the isomeric lithium acetylides at temperatures above about -20 C, probably via HC C-C(Li )R R Lithiated 1,2,4-trienes, LiCH=C=C-C=C-, are... [Pg.9]

C. The mixture was cooled to -70°C and the allene (0.22 mol) was added in 5-10 min while maintaining the temperature between -60 and -70°C. After stirring for an additional 30 min at -60°C the solution was ready for further conversions. In the raetallation with ethyllithium the salts initially present had disappeared almost completely after this period. During the lithiation with commercial butyl-lithium the reaction mixture was continuously homogeneous. The solution of the lithiated allenes should be kept below -60°C and used within a few hours. [Pg.23]

To absolution of 1.00 mol of ethyl lithium in 800-900 ml of diethyl ether (see Chapter II, Exp. 1) was added, with cooling between -20 and -10°C, 0.50 nol of dry propargyl alcohol, dissolved in 100 ml of diethyl ether. Subsequently 1.1 mol of trimethylchlorosilane was introduced over a period of 25 min with cooling between -15 and +5°C. After stirring for an additional 2 h at about 30°C the suspension was poured into a solution of 30 g of acetic acid in 150 ml of water. After stirring for 1 h at room temperature the layers were separated and the aqueous layer v/as extracted four times with diethyl ether. The combined ethereal solutions were washed with sodium hydrogen carbonate solution in order to neutralize acetic acid, and were then dried over magnesium sulfate. The diethyl ether was removed by evaporation in a water-pump vacuum and the residue distilled... [Pg.58]

After the air in the flask had been completely replaced with nitrogen, it was cooled in a liquid nitrogen bath and a solution of 25 g of acetylene in 160 ml of dry THF was introduced. The solution had been prepared by dissolving acetylene (freed from acetone by means of a cold trap) in THF cooled at -80 to -90°C. A solution of 0.21 mol of butyl lithium in about 150 ml of hexane was added in 5 min to the vigorously stirred solution. During this addition the temperature of the mixture was kept between -80 and -100°C by occasionally dipping the flask into the liquid nitrogen. To the white suspension were successively added at -80°C a solution of 10 g. of anhydrous lithium bromide (note 1) in 30 ml of THF and 0.20 mol of freshly distilled benzaldehyde. The reaction mixture was kept for 3 h at -69°C, after which the temperature was allowed to rise to +10°C over a period of 2 h. [Pg.80]

The period (or row) of the periodic table m which an element appears corresponds to the principal quantum number of the highest numbered occupied orbital (n = 1 m the case of hydrogen and helium) Hydrogen and helium are first row elements lithium in = 2) IS a second row element... [Pg.9]

The molten carbonate fuel ceU uses eutectic blends of Hthium and potassium carbonates as the electrolyte. A special grade of Hthium carbonate is used in treatment of affective mental (mood) disorders, including clinical depression and bipolar disorders. Lithium has also been evaluated in treatment of schizophrenia, schizoaffective disorders, alcoholism, and periodic aggressive behavior (56). [Pg.225]

It is not advisable to store large quantities of picrates for long periods, particularly when they are dry due to their potential EXPLOSIVE nature. The free base should be recovered as soon as possible. The picrate is suspended in an excess of 2N aqueous NaOH and warmed a little. Because of the limited solubility of sodium picrate, excess hot water must be added. Alternatively, because of the greater solubility of lithium picrate, aqueous 10% lithium hydroxide solution can be used. The solution is cooled, the amine is extracted with a suitable solvent such as diethyl ether or toluene, washed with 5N NaOH until the alkaline solution remains colourless, then with water, and the extract is dried with anhydrous sodium carbonate. The solvent is distilled off and the amine is fractionally distilled (under reduced pressure if necessary) or recrystallised. [Pg.57]

To a solution of 1.38 g of estradiol 3-methyl ether (mp 118-119°) in 110 ml of anhydrous ether is added 140 ml of liquid ammonia followed by 1.4 g (42 eq per mole) of lithium wire in small pieces, and 10 min later 16 ml of absolute alcohol is added dropwise over a 10- to 20-min period. Occasionally frothing occurs during the last part of this addition but is easily controlled by stopping the stirrer temporarily. After removing most of the ammonia and carefully adding cold water, the product is extracted with ether, washed with Claisen alkali, water and saturated salt solution, and dried over sodium... [Pg.48]

A suspension of lithium aluminum deuteride (1.6 g) in dry tetrahydrofuran (60 ml) is added dropwise to a stirred and cooled (with ice-salt bath) solution of 5a-androst-l4-ene-3j3,17j3-diol (179, 1.6 g) and boron trifluoride-etherate (13.3 g) in dry tetrahydrofuran (60 ml). The addition is carried out in a dry nitrogen atmosphere, over a period of 30 min. After an additional 30 min of cooling the stirring is continued at room temperature for 2 hr. The cooling is resumed in a dry ice-acetone bath and the excess deuteriodiborane is destroyed by the cautious addition of propionic acid. The tetrahydrofuran is then evaporated and the residue is dissolved in propionic acid and heated under reflux in a nitrogen atmosphere for 8 hr. After cooling, water is added and the product extracted with ether. The ether... [Pg.194]

A solution of 16jS-methyl-l la,17a,21-trihydroxy-5j5-pregnane-3,20-dione 21-acetate (52), 45 g, in dioxane (297 ml) is cooled to 15° and treated over a 5 min period with a solution of bromine (34.2 g) in dioxane (594 ml) precooled to 18°. After 2 min a solution of sodium acetate (60 g) in water (600 ml) is added and the mixture poured into ice water (8 liters). The precipitate is filtered off, washed to neutrality with water, and dried to give the crude dibromide (53), 55.7 g mp 125-126° (dec.) [aJu 58°. A mixture of dibromide (53), 55.5 g, lithium bromide (27.8 g), lithium carbonate (27.8 g) and DMF (1.11 liters) is refluxed under rapid stirring for 6 hr. The mixture is concentrated under vacuum to about 250 ml, poured into ice water (8 liters) containing hydrochloric acid (250 ml), and extracted with methylene dichloride. The extracts are washed to neutrality with water and evaporated to dryness. The residue is dissolved in acetone, evaporated to dryness under reduced pressure, redissolved in acetone and crystallized by the additon of hexane. This gives the dienone (54) 24.4 g, mp 236-239°. [Pg.300]

The dry tosylhydrazone (20 g, 45.5 mmol) is dissolved in 750 ml of 1,2-dimethoxyethane (freshly distilled from lithium aluminum hydride) in a flame-dried 1 liter round bottom flask fitted with a 240 ml addition funnel, a drierite tube and a magnetic stirrer. A 2.05 M ether solution of methyllithium (130 ml, Alfa Inorganics, Inc.—Caution to avoid the mineral oil impurity the methyllithium solution is decanted from a cold solution which contains a precipitate) is placed in the dropping funnel and added over a 60 min period. The temperature of the reaction mixture increases to ca. 35° during the addition however, no cooling precautions are required. The highly colored reaction mixture is stirred for 7 hr and then poured into 1.5 liters of ice water. The flocculent precipitate is digested for 12 hr at room temperature to speed the filtration. After filtration the filter cake is washed with 500 ml water and dried under vacuum at 50° for several hr. The androsta-5,16-dien-3l5-ol is obtained in ca. 70% yield after recrystallization from methanol mp 138-139°. [Pg.33]

After drying under vacuum this iodo azide (2.43 g) is suspended in 50 ml of ether and added with stirring to a cold (0°) slurry of lithium aluminum hydride (1.2 g) in 70 ml of anhydrous ether in a 250 ml 3-necked flask (fitted with a reflux condenser and a mechanical stirrer with a Teflon blade). The remaining traces of the iodo azide are rinsed into the reaction flask with three 10 ml portions of ether. The reaction mixture is allowed to warm to room temperature and to stir for a total period of 11 hr. [Pg.33]

Acetylene is passed for 1 hr through a mixture consisting of 0.5 g (72 mg-atoms) of lithium in 100 ml of ethylene-diamine. A solution prepared from 1 g (3.5 mmoles) of rac-3-methoxy-18-methylestra-l,3,5(10)-trien-I7-one and 30 ml of tetrahydrofuran is then added at room temperature with stirring over a period of 30 min. After an additional 2 hr during which time acetylene is passed through the solution the mixture is neutralized with 5 g of ammonium chloride, diluted with 50 ml water, and extracted with ether. The ether extracts are washed successively with 10% sulfuric acid, saturated sodium hydrogen carbonate and water. The extract is dried over sodium sulfate and concentrated to yield a solid crystalline material, which on recrystallization from methanol affords 0.95 g (87%) of rac-3-methoxy-18-methyl-17a-ethynyl-estra-l,3,5(10)-trien-17jB-ol as colorless needles mp 161°. [Pg.73]


See other pages where Lithium periodate is mentioned: [Pg.187]    [Pg.410]    [Pg.66]    [Pg.410]    [Pg.277]    [Pg.187]    [Pg.410]    [Pg.66]    [Pg.410]    [Pg.277]    [Pg.14]    [Pg.14]    [Pg.17]    [Pg.21]    [Pg.156]    [Pg.258]    [Pg.9]    [Pg.51]    [Pg.163]    [Pg.68]    [Pg.284]    [Pg.323]    [Pg.220]    [Pg.220]    [Pg.223]    [Pg.140]    [Pg.4]    [Pg.77]    [Pg.1119]    [Pg.41]    [Pg.75]    [Pg.102]    [Pg.609]    [Pg.49]    [Pg.382]    [Pg.22]    [Pg.4]    [Pg.100]    [Pg.32]   
See also in sourсe #XX -- [ Pg.29 ]

See also in sourсe #XX -- [ Pg.66 ]




SEARCH



© 2024 chempedia.info