Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium advantages

Lithium Halides. Lithium haHde stabiHty decreases with increasing atomic weight of the halogen atom. Hence, the solubiHty increases from the sparingly soluble Hthium fluoride to the very soluble bromide and iodide salts. The low melting points of Hthium haHdes are advantageous for fluxes in many appHcations. [Pg.225]

The reductions of chlorosilanes by lithium aluminum hydride, lithium hydride, and other metal hydrides, MH, offers the advantages of higher yield and purity as well as dexibiUty in producing a range of siUcon hydrides comparable to the range of siUcon haUdes (59). The general reaction is as follows ... [Pg.23]

There has been much interest in making chemicals from brine because of the low expense compared to alternative methods. Lithium, for example, had been mostly produced from spodumene ore, but now most is produced from brine. Those now producing from ore are seriously researching brine reserves and contemplating converting to brine sources before the turn of the century. Similady, solar salt has cost advantages over mined rock salt. Potassium chloride produced from brine has more than doubled from 1980 to 1990. [Pg.414]

The formation of g-alkyl-a,g-unsaturated esters by reaction of lithium dialkylcuprates or Grignard reagents in the presence of copper(I) iodide, with g-phenylthio-, > g-acetoxy-g-chloro-, and g-phosphoryloxy-a,g-unsaturated esters has been reported. The principal advantage of the enol phosphate method is the ease and efficiency with which these compounds may be prepared from g-keto esters. A wide variety of cyclic and acyclic g-alkyl-a,g-unsaturated esters has been synthesized from the corresponding g-keto esters. However, the method is limited to primary dialkylcuprates. Acyclic g-keto esters afford (Zl-enol phosphates which undergo stereoselective substitution with lithium dialkylcuprates with predominant retention of stereochemistry (usually > 85-98i )). It is essential that the cuprate coupling reaction of the acyclic enol phosphates be carried out at lower temperatures (-47 to -9a°C) to achieve high stereoselectivity. When combined with they-... [Pg.21]

The rechargeable lithium-ion battery is one of a number of new battery technologies which have been developed in the last ten years. TTiis battery system, operating at room temperature, offers several advantages compared to conventional aqueous battery technologies, for example,... [Pg.341]

The choice of metal for a reduction depends upon the structure of the compound being reduced. For practical purposes the choice is between lithium and sodium since neither potassium nor calcium offer any advantages. Reductions with sodium require the use of iron-free reagents, but the author prefers to use iron-free reagents with lithium also, in order to ensure that reductions are reproducible. Lithium is required for the reduction of 5-methoxytetralin analogs and for the reduction of heavily alkylated rings such... [Pg.26]

Some advantages of this reaction are high yield if the tosylate is in a sterically accessible position excellent isotopic purity of the product (usually higher than-95%) and perhaps most important, access to stereospecifically labeled methylene derivatives. For example, deuteride displacement of 3j -tosylates (183) yields the corresponding Sa-d derivative (185) in 96-98% isotopic purity. Application of this method to the labeled sulfonate (184), obtained. by lithium aluminum deuteride reduction of a 3-ketone precursor (see section HI-A) followed by tosylation, provides an excellent synthesis of 3,3-d2 labeled steroids (186) without isotopic scrambling at the adjacent positions. The only other method which provides products of comparable isotopic purity at this position is the reduction of the tosyl-hydrazone derivative of 3-keto steroids (section IV-B). [Pg.197]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

The properties of chlorine azide resemble those of bromine azide. Pon-sold has taken advantage of the stronger carbon-chlorine bond, i.e., the resistance to elimination, in the chloro azide adducts and thus synthesized several steroidal aziridines. 5a-Chloro-6 -azidocholestan-3 -ol (101) can be converted into 5, 6 -iminocholestan-3l -ol (102) in almost quantitative yield with lithium aluminum hydride. It is noteworthy that this aziridine cannot be synthesized by the more general mesyloxyazide route. Addition of chlorine azide to testosterone followed by acetylation gives both a cis- and a trans-2iddMct from which 4/S-chloro-17/S-hydroxy-5a-azidoandrostan-3-one acetate (104) is obtained by fractional crystallization. In this case, sodium borohydride is used for the stereoselective reduction of the 3-ketone... [Pg.25]

The azido mesylate may also be reduced with lithium aluminum hydride in the same manner as previously described for iodo azide reductions. The sodium borohydride/cobalt(II)tris(a,a -dipyridyl)bromide reagent may be used, but it does not seem to offer any advantages over the more facile lithium aluminum hydride or hydrazine/Raney nickel procedures. [Pg.36]

A useful alternate procedure which allows the generation and alkylation of the less stable enolate anion has been reported by Stork.This method takes advantage of the fact that the thermodynamically less stable enolate anion formed in the lithium ammonia reduction of a conjugated enone... [Pg.86]

Aryl and alkyl trimethylsilyl ethers can often be cleaved by refluxing in aqueous methanol, an advantage for acid- or base-sensitive substrates. The ethers are stable to Grignard and Wittig reactions and to reduction with lithium aluminum hydride at —15°. Aryl -butyldimethylsilyl ethers and other sterically more demanding silyl ethers require acid- or fluoride ion-catalyzed hydrolysis for removal. Increased steric bulk also improves their stability to a much harsher set of conditions. An excellent review of the selective deprotection of alkyl silyl ethers and aryl silyl ethers has been published. ... [Pg.273]

The Meerwein-Ponndorf-Verley procedure has largely been replaced by reduction procedures that use lithium aluminum hydride, sodium borohydride or derivatives thereof. The Meerwein-Ponndorf-Verley reduction however has the advantage to be a mild and selective method, that does not affect carbon-carbon double or triple bonds present in the substrate molecule. [Pg.200]

The Rosenmund reduction is usually applied for the conversion of a carboxylic acid into the corresponding aldehyde via the acyl chloride. Alternatively a carboxylic acid may be reduced with lithium aluminum hydride to the alcohol, which in turn may then be oxidized to the aldehyde. Both routes require the preparation of an intermediate product and each route may have its advantages over the other, depending on substrate structure. [Pg.245]

In this experiment, advantage is made of the fact that lithium-ammonia reduction usually proceeds to give trans-fused Decalins 4). Thus, hydrogenation of A -octal one-2 over palladium catalyst gives essentially cw-2-decalone as the product, whereas the lithium-ammonia reduction of the octalone gives the trans ring fusion. [Pg.27]

As previously described, a mixture of and J -octalins can be prepared by the reduction of naphthalene or Tetralin. Another route to this mixture is the dehydration of a mixture of 2-decalol isomers. This latter route has certain advantages in that one can avoid the handling of lithium metal and low-boiling amines. Moreover, 2-decalol is available commercially or can be prepared by the hydrogenation of 2-naphthol (5). In either case a comparable mixture of octalins is obtained, which can be purified by selective hydroboration to give the pure J -octalin (Chapter 4, Section III). [Pg.56]


See other pages where Lithium advantages is mentioned: [Pg.466]    [Pg.466]    [Pg.273]    [Pg.9]    [Pg.5]    [Pg.249]    [Pg.321]    [Pg.397]    [Pg.508]    [Pg.128]    [Pg.317]    [Pg.466]    [Pg.220]    [Pg.224]    [Pg.313]    [Pg.246]    [Pg.29]    [Pg.482]    [Pg.533]    [Pg.535]    [Pg.536]    [Pg.582]    [Pg.582]    [Pg.584]    [Pg.585]    [Pg.1119]    [Pg.125]    [Pg.609]    [Pg.305]    [Pg.21]    [Pg.262]    [Pg.126]    [Pg.878]    [Pg.696]    [Pg.222]    [Pg.108]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Advantages of polymer electrolytes in lithium ion batteries

Lithium general advantages

Lithium primary batteries advantages

Lithium rechargeable batteries advantages

© 2024 chempedia.info