Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids fractional distillation

Sections 8.3 and 8.4 Physical Constants of Liquids Fractional Distillation, Azeotropes Ethanol and Fermentation Chemistry... [Pg.155]

Industrially, elemental nitrogen is extracted from the air by the fractional distillation of liquid air from which carbon dioxide and water have been removed. The major fractions are nitrogen, b.p. 77 K and oxygen, b.p. 90 K, together with smaller quantities of the noble gases. [Pg.208]

The extraction of titanium is still relatively costly first the dioxide Ti02 is converted to the tetrachloride TiCl4 by heating with carbon in a stream of chlorine the tetrachloride is a volatile liquid which can be rendered pure by fractional distillation. The next stage is costly the reduction of the tetrachloride to the metal, with magnesium. must be carried out in a molybdenum-coated iron crucible in an atmospheric of argon at about 1100 K ... [Pg.370]

If, however, the impurities are themselves volatile liquids, then the separation of these impurities from the main bulk of the required substance is achieved by fractional distillation. If an ordinary distilling-flask, such as that shown in Fig. 2, p. 8, is used for this purpose, however, only a very partial separation of the liquid components of the crude mixture is usually obtained, unless there is a considerable difference in boiling-point between the impurities and the main component. T0 obtain a much sharper and more complete separation, a fractionating column is employed. [Pg.25]

Place 80 g, of hydroxylamine sulphate (or 68-5 g. of the hydrochloride), 25 g. of hydrated sodium acetate, and 100 ml. of water in a 500 ml. flask fitted with a stirrer and a reflux water-condenser, and heat the stirred solution to 55-60°. Run in 35 g (42 nil,) of -hexyl methyl ketone, and continue the heating and vigorous stirring for ij hours. (The mixture can conveniently be set aside overnight after this stage.) Extract the oily oxime from the cold mixture twice with ether. Wash the united ethereal extract once with a small quantity of water, and dry it with sodium sulphate. Then distil off the ether from the filtered extract, preferably using a distillation flask of type shown in Fig. 41 (p. 65) and of ca, 50 ml, capacity, the extract being run in as fast as the ether distils, and then fractionally distil the oxime at water-pump pressure. Collect the liquid ketoxime, b.p. 110-111713 mm. Yield, 30-32 g. [Pg.225]

Fractional distillation. The aim of distillation is the separation of a volatile liquid from a non-volatile substance or, more usually, the separation of two or more liquids of different boiling point. The latter is usually termed fractional distillation. The theoretical treatment of fractional distillation requires a knowledge of the relation between the boiling points, or vapour pressures, of mixtures of the substances and their composition if these curves are known, it is possible to predict whether the separation is difficult or easy or, indeed, whether it will be possible. [Pg.5]

An elementary account of the subject has been given in the previous Section. For the fractional distillation under diminished pressure of liquids diflfering only slightly in boiling point, a firactionating column (see Sections 11,15 and 11,17) must be used. Provision must, of course, be made for the insertion of a capillary tube into the fiask containing the mixture. This can be done by any of the following methods —... [Pg.119]

The liquid phosphorus oxychloride, b.p. 107°, is a by-product and is removed by fractional distillation under normal pressure. Unless the b.p. of the acid chloride differs very considerably (say, <] 100°) from that of the phosphorus oxychloride, the acyl halide is liable to contain traces of the latter. In such circumstances it is preferable to use thionyl chloride for the preparation of the acid chloride. [Pg.791]

Separations based upon differences in the physical properties of the components. When procedures (1) or (2) are unsatisfactory for the separation of a mixture of organic compounds, purely physical methods may be employed. Thus a mixture of volatile liquids may be fractionally distilled (compare Sections 11,15 and 11,17) the degree of separation may be determined by the range of boiling points and/or the refractive indices and densities of the different fractions that are collected. A mixture of non-volatile sohds may frequently be separated by making use of the differences in solubilities in inert solvents the separation is usually controlled by m.p. determinations. Sometimes one of the components of the mixture is volatile and can be separated by sublimation (see Section 11,45). [Pg.1092]

Classical methods for separation and purifica tion include fractional distillation of liquids and re crystallization of solids and these two methods are routinely included in the early portions of laboratory courses in organic chemistry Because they are capa ble of being adapted to work on a large scale frac tional distillation and recrystallization are the preferred methods for purifying organic substances in the pharmaceutical and chemical industries... [Pg.572]

In order to make a multipurpose plant even more versatile than module IV, equipment for unit operations such as soHd materials handling, high temperature/high pressure reaction, fractional distillation (qv), Hquid—Hquid extraction (see Extraction, liquid-liquid), soHd—Hquid separation, thin-film evaporation (qv), dryiag (qv), size reduction (qv) of soHds, and adsorption (qv) and absorption (qv), maybe iastalled. [Pg.438]

One of the most widely applicable and most commonly used methods of purification of liquids or low melting solids (especially of organic chemicals) is fractional distillation at atmospheric, or some lower, pressure. Almost without exception, this method can be assumed to be suitable for all organic liquids and most of the low-melting organic solids. For this reason it has been possible in Chapter 4 to omit many procedures for purification of organic chemicals when only a simple fractional distillation is involved - the suitability of such a procedure is implied from the boiling point. [Pg.8]


See other pages where Liquids fractional distillation is mentioned: [Pg.289]    [Pg.364]    [Pg.43]    [Pg.289]    [Pg.364]    [Pg.43]    [Pg.144]    [Pg.184]    [Pg.232]    [Pg.317]    [Pg.373]    [Pg.428]    [Pg.215]    [Pg.25]    [Pg.45]    [Pg.116]    [Pg.150]    [Pg.398]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.102]    [Pg.117]    [Pg.178]    [Pg.352]    [Pg.459]    [Pg.1029]    [Pg.24]    [Pg.209]    [Pg.1313]    [Pg.2362]    [Pg.4]    [Pg.9]    [Pg.9]    [Pg.11]    [Pg.26]   
See also in sourсe #XX -- [ Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 ]




SEARCH



Distillation fractional

Distillation fractions

Fractional distillation of liquid air

Fractional distillation vapor-liquid composition diagrams

Liquid distillation

Liquid fractionation

Purification, liquids fractional distillation

© 2024 chempedia.info