Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid Metal Fast Breeder Reactor plutonium

The plutonium fuel in a breeder reactor behaves differently than uranium. Fast neutrons are required to split plutonium. For this reason, water cannot be used in breeder reactors because it moderates the neutrons. Liquid sodium is typically used in breeder reactors, and the term liquid metal fast breeder reactor (LMFBR) is used to describe it. One of the controversies associated with the breeder reactor is that it results... [Pg.249]

A solvent extraction process similar to Purex using TBP was developed by the Commissariat a I Energie Atomique [Gl] for use in the French plutonium separation plant at Marcoule. Since then, the Purex process has replaced the Butex process at Windscale [W3], has been used in the Soviet Union [Sll], India [S7], and Germany [S3], and by now is the universal choice for separation of uranium and plutonium from fission products in irradiated sUghtly enriched uranium. Fuel from the liquid-metal fast-breeder reactor (LMFBR) is also reprocessed by the Purex process, with modifications to accommodate the higher concentrations of plutonium and fission products. [Pg.461]

Oxide fuels have demonstrated very satisfactory high-temperature, dimensional, and radiation stability and chemical compatibility with cladding metals and coolant in light-water reactor service. Under the much more severe conditions in a fast reactor, however, even inert UO2 begins to respond to its environment in a manner that is often detrimental to fuel performance. Uranium dioxide is almost exclusively used in light-water-moderated reactors (LWR). Mixed oxides of uranium and plutonium are used in liquid-metal fast breeder reactors (LMFBR). [Pg.168]

In fast (neutron) reactors, the fission chain reaction is sustained by fast neutrons, unlike in thermal reactors. Thus, fast reactors require fuel that is relatively rich in fissile material highly enriched uranium (> 20%) or plutonium. As fast neutrons are desired, there is also the need to eliminate neutron moderators hence, certain liquid metals, such as sodium, are used for cooling instead of water. Fast reactors more deliberately use the 238U as well as the fissile 235U isotope used in most reactors. If designed to produce more plutonium than they consume, they are called fast-breeder reactors if they are net consumers of plutonium, they are called burners . [Pg.121]

The projections are based on a recent forecast (Case B) by the Energy Research and Development Administration (ERDA) of nuclear power growth in the United States (2) and on fuel mass-flow data developed for light water reactors fueled with uranium (LWR-U) or mixed uranium and plutonium oxide (LWR-Pu), a high temperature gas-cooled reactor (HTGR), and two liquid-metal-cooled fast breeder reactors (LMFBRs). Nuclear characteristics of the fuels and wastes were calculated using the computer code ORIGEN (3). [Pg.85]

The BN-350 is a fast breeder reactor located in Aktau, Kazakstan on the eastern shore of the Caspian Sea. The reactor began operation in 1972. It operated on an open uranium fuel cycle optimized to produce plutonium for the USSR weapons complex and generated steam for electricity, heat and seawater desalination. The reactor was in operation until April 1999 when decision for final shutdown had been taken by Government. In this report the operational experience is considered for the following equipment that directly contacts the liquid metal coolant The main circulation pumps of primary circuit ... [Pg.63]

On the other hand, liquid metal-cooled fast reactors (LM-FRs), or breeders, have been under development for many years. With breeding capability, fast reactors can extract up to 60 times as much energy from uranium as can thermal reactors. The successful design, construction, and operation of such plants in several countries, notably France and the Russian Federation, has provided more than 200 reactor-years of experience on which to base further improvements. In the future, fast reactors may also be used to burn plutonium and other long-lived transuranic radioisotopes, allowing isolation time for high-level radioactive waste to be reduced. [Pg.342]


See other pages where Liquid Metal Fast Breeder Reactor plutonium is mentioned: [Pg.156]    [Pg.988]    [Pg.84]    [Pg.144]    [Pg.567]    [Pg.7201]    [Pg.323]    [Pg.1270]    [Pg.885]    [Pg.885]    [Pg.7030]    [Pg.65]    [Pg.141]    [Pg.1193]    [Pg.2652]    [Pg.2807]    [Pg.930]   
See also in sourсe #XX -- [ Pg.239 , Pg.885 ]

See also in sourсe #XX -- [ Pg.239 , Pg.885 ]

See also in sourсe #XX -- [ Pg.6 , Pg.239 , Pg.885 ]




SEARCH



Breeder reactor

Breeders

Liquid Metal Fast Breeder Reactor

Liquid metal fast reactors

Liquid reactors

Plutonium breeder reactors

Plutonium metal

Reactor metal

© 2024 chempedia.info