Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipids steroid hormones

We turn now to the biosynthesis of lipid structures. We begin with a discussion of the biosynthesis of fatty acids, stressing the basic pathways, additional means of elongation, mechanisms for the introduction of double bonds, and regulation of fatty acid synthesis. Sections then follow on the biosynthesis of glyc-erophospholipids, sphingolipids, eicosanoids, and cholesterol. The transport of lipids through the body in lipoprotein complexes is described, and the chapter closes with discussions of the biosynthesis of bile salts and steroid hormones. [Pg.802]

Bilirubin is nonpolar and would persist in cells (eg, bound to lipids) if not rendered water-soluble. Hepatocytes convert bilirubin to a polar form, which is readily excreted in the bile, by adding glucuronic acid molecules to it. This process is called conjugation and can employ polar molecules other than glucuronic acid (eg, sulfate). Many steroid hormones and drugs are also... [Pg.280]

Steroid hormones are produced by the adrenal cortex, testes, ovaries, and placenta. Synthesized from cholesterol, these hormones are lipid soluble therefore, they cross cell membranes readily and bind to receptors found intracellularly. However, because their lipid solubility renders them insoluble in blood, these hormones are transported in the blood bound to proteins. Furthermore, steroid hormones are not typically preformed and stored for future use within the endocrine gland. Because they are lipid soluble, they could diffuse out of the cells and physiological regulation of their release would not be possible. Finally, steroid hormones are absorbed easily by the gastrointestinal tract and therefore may be administered orally. [Pg.112]

Steroid hormones are produced by only two tissue types, the adrenal cortex and the gonads. A summary of the steroid hormones is given in Table 4.2. Steroid hormones are synthesized from cholesterol (Figure 4.2). This sterol lipid may itself be synthesized within the steroidogenic cell or it may be delivered to the cell by circulating lipoprotein complexes such as low density lipoprotein (LDL) or high density lipoprotein (HDL). [Pg.85]

Only if the hormone is lipid soluble, and can therefore transfer rapidly across the cell membrane, can the receptor be within the cell. Examples of such hormones include the steroid hormones (e.g. sex hormones, adrenal steroids and dihydroxycholecalciferol) and thyroxine (i.e. triiodothyronine). [Pg.257]

Cholesterol is a major constituent of the cell membranes of animal cells (see p. 216). It would be possible for the body to provide its full daily cholesterol requirement (ca. 1 g) by synthesizing it itself However, with a mixed diet, only about half of the cholesterol is derived from endogenous biosynthesis, which takes place in the intestine and skin, and mainly in the liver (about 50%). The rest is taken up from food. Most of the cholesterol is incorporated into the lipid layer of plasma membranes, or converted into bile acids (see p. 314). A very small amount of cholesterol is used for biosynthesis of the steroid hormones (see p. 376). In addition, up to 1 g cholesterol per day is released into the bile and thus excreted. [Pg.172]

Membrane-located enzymes in the sER catalyze lipid synthesis. Phospholipid synthesis (see p. 170) is located in the sER, for example, and several steps in cholesterol biosynthesis (see p. 172) also take place there. In endocrine cells that form steroid hormones, a large proportion of the reaction steps involved also take place in the sER (see p. 376). [Pg.226]

The cholesterol required for biosynthesis of the steroid hormones is obtained from various sources, it is either taken up as a constituent of LDL lipoproteins (see p. 278) into the hormone-synthesizing glandular cells, or synthesized by glandular cells themselves from acetyl-CoA (see p. 172). Excess cholesterol is stored in the form of fatty acid esters in lipid droplets. Hydrolysis allows rapid mobilization of the cholesterol from this reserve again. [Pg.376]

Biosynthesis represents the major metabolic fate of cholesterol, accounting for more than half of the 800 mg/day of cholesterol that the average adult uses up in metabolic processes. By comparison, steroid hormone biosynthesis consumes only about 50 mg of cholesterol per day. Much more that 400 mg of bile salts is required and secreted into the intestine per day, and this is achieved by recycling them. Most of the bile salts secreted into the upper region of the small intestine are absorbed along with the dietary lipids that they emulsified at the lower end of the small intestine. They are... [Pg.66]

Lipids are important components of the diet fatty acids are the higher energetic source as they ensure 9kcal/g. Furthermore, some peculiar fatty acids themselves and several components of the unsaponifiable fraction are biologically active molecules, as they can act as vitamins (tocopherols— vitamin E), provitamins (carotenes—vitamin A, cholecalcipherol—vitamin D), vitamin-like (essential fatty acids), and hormones or hormone precursors (sterols—steroidal hormones). [Pg.563]

The remaining steroid lipids constitute two main classes of steroid hormones sex hormones and adrenocortical hormones. The sex hormones include androgens (testosterone, androsterone), estrogens (estrone, estradiol), and progestins (progesterone). The adrenocortical hormones include mineralocorticoids (aldosterone) and glucocorticoids (hydrocortisone). [Pg.474]

Cholesterol is an important structural component of cellular membranes, where it plays a role in modulating membrane fluidity and phase transitions, and, together with sphingomyelin, forms lipid rafts or caveolae, which are sites where proteins involved in diverse signaling pathways become concentrated. Furthermore, cholesterol is a precursor of oxysterols, steroid hormones, and bile acids. [Pg.483]

Cholesterol (Appendix 3C) is the principal sterol in milk (>95% of total sterols) the level ( 0.3%, w/w, of total lipids) is low compared with many other foods. Most of the cholesterol is in the free form, with less than 10% as cholesteryl esters. Several other sterols, including steroid hormones, occur at trace levels. [Pg.85]

Cholesterol is doubtless the most publicized lipid, notorious because of the strong correlation between high levels of cholesterol in the blood and the incidence of human cardiovascular diseases. Less well advertised is cholesterol s crucial role as a component of cellular membranes and as a precursor of steroid hormones and bile acids. Cholesterol is an essential molecule in many animals, including humans, but is not required in the mammalian diet—all cells can synthesize it from simple precursors. [Pg.816]

While many hormones bind to surface receptors the steroid hormones, which are lipid in nature, pass through the cell membrane and bind to receptor proteins in the nucleus. The resulting hormone-protein complexes induce changes in gene expression through regulation of transcription (Fig. 11-1, top). These receptors are considered in Chapter 22 and hormones are considered further in Chapter 30. [Pg.553]

Mitochondria play a central role in a variety of biological processes, including ATP synthesis, steroid hormone synthesis, the urea cycle, lipid and amino acid metabolism, and cellular Ca2+ homeostasis. Ca2+ is an essential regulator of vital processes, such as secretion, motility, metabolic control, synaptic plasticity, proliferation, gene expression and apoptosis. Therefore, the location, amplitude,... [Pg.481]

Cytosolic Hormone Receptors. Steroid hormones typically bind to protein receptors, which are located directly within the cytosol (see Fig. 28-2).17 Of course, this means that the hormone must first enter the cell, which is easily accomplished by the steroid hormones because they are highly lipid soluble. After entering the cell, the hormone initiates a series of events that are depicted in Figure 28-3. Basically, the hormone and receptor form a large activated steroid-receptor complex.17 This complex travels to the cell s nucleus, where it binds to specific genes located within the DNA sequence.31,40 This process initiates gene expres-... [Pg.409]


See other pages where Lipids steroid hormones is mentioned: [Pg.13]    [Pg.705]    [Pg.438]    [Pg.492]    [Pg.60]    [Pg.33]    [Pg.207]    [Pg.406]    [Pg.407]    [Pg.79]    [Pg.47]    [Pg.584]    [Pg.5]    [Pg.20]    [Pg.311]    [Pg.330]    [Pg.234]    [Pg.67]    [Pg.85]    [Pg.108]    [Pg.402]    [Pg.177]    [Pg.896]    [Pg.919]    [Pg.171]    [Pg.217]    [Pg.519]    [Pg.1247]    [Pg.374]    [Pg.931]    [Pg.459]    [Pg.477]    [Pg.91]    [Pg.407]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Hormones, steroidal

Lipid hormone

Lipids steroids

Steroids steroid hormones

© 2024 chempedia.info