Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear regression squares

Figure B2.4.2. Eyring plot of log(rate/7) versus (1/7), where Jis absolute temperature, for the cis-trans isomerism of the aldehyde group in fiirfiiral. Rates were obtained from tln-ee different experiments measurements (squares), bandshapes (triangles) and selective inversions (circles). The line is a linear regression to the data. The slope of the line is A H IR, and the intercept at 1/J = 0 is A S IR, where R is the gas constant. A and A are the enthalpy and entropy of activation, according to equation (B2.4.1)... Figure B2.4.2. Eyring plot of log(rate/7) versus (1/7), where Jis absolute temperature, for the cis-trans isomerism of the aldehyde group in fiirfiiral. Rates were obtained from tln-ee different experiments measurements (squares), bandshapes (triangles) and selective inversions (circles). The line is a linear regression to the data. The slope of the line is A H IR, and the intercept at 1/J = 0 is A S IR, where R is the gas constant. A and A are the enthalpy and entropy of activation, according to equation (B2.4.1)...
To gain insight into chemometric methods such as correlation analysis, Multiple Linear Regression Analysis, Principal Component Analysis, Principal Component Regression, and Partial Least Squares regression/Projection to Latent Structures... [Pg.439]

Kohonen network Conceptual clustering Principal Component Analysis (PCA) Decision trees Partial Least Squares (PLS) Multiple Linear Regression (MLR) Counter-propagation networks Back-propagation networks Genetic algorithms (GA)... [Pg.442]

Figure 9-5. Linear regression The sum of the squares of the vertical distances of the points from the line is minimized. Figure 9-5. Linear regression The sum of the squares of the vertical distances of the points from the line is minimized.
The goal of linear regression is to adapt the values of the slope and of the intercept so that the line gives the best prediction of y from x. This is achieved by minimizing the sum of the squares of the vertical distances of the points from the line. An example of linear regression is given in Figure 9-S. [Pg.446]

Linear regression, also known as the method of least squares, is covered in Section 5C. [Pg.109]

There is an obvious similarity between equation 5.15 and the standard deviation introduced in Chapter 4, except that the sum of squares term for Sr is determined relative toy instead of y, and the denominator is - 2 instead of - 1 - 2 indicates that the linear regression analysis has only - 2 degrees of freedom since two parameters, the slope and the intercept, are used to calculate the values ofy . [Pg.121]

Most of the 2D QSAR methods are based on graph theoretic indices, which have been extensively studied by Randic [29] and Kier and Hall [30,31]. Although these structural indices represent different aspects of molecular structures, their physicochemical meaning is unclear. Successful applications of these topological indices combined with multiple linear regression (MLR) analysis are summarized in Ref. 31. On the other hand, parameters derived from various experiments through chemometric methods have also been used in the study of peptide QSAR, where partial least square (PLS) [32] analysis has been employed [33]. [Pg.359]

S Wold, A Ruhe, H Wold, WJ Dunn III. The collmearity problem m linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM I Sci Stat Comput 5 735-743, 1984. [Pg.367]

If the rate law depends on the concentration of more than one component, and it is not possible to use the method of one component being in excess, a linearized least squares method can be used. The purpose of regression analysis is to determine a functional relationship between the dependent variable (e.g., the reaction rate) and the various independent variables (e.g., the concentrations). [Pg.171]

A non-linear regression analysis is employed using die Solver in Microsoft Excel spreadsheet to determine die values of and in die following examples. Example 1-5 (Chapter 1) involves the enzymatic reaction in the conversion of urea to ammonia and carbon dioxide and Example 11-1 deals with the interconversion of D-glyceraldehyde 3-Phosphate and dihydroxyacetone phosphate. The Solver (EXAMPLEll-l.xls and EXAMPLEll-3.xls) uses the Michaehs-Menten (MM) formula to compute v i- The residual sums of squares between Vg(,j, and v j is then calculated. Using guessed values of and the Solver uses a search optimization technique to determine MM parameters. The values of and in Example 11-1 are ... [Pg.849]

The most widely used method for fitting a straight line to integrated rate equations is by linear least-squares regression. These equations have only two variables, namely, a concentration or concentration ratio and a time, but we will develop a more general relationship for use later in the book. [Pg.41]

Referring to the earlier treatment of linear least-squares regression, we saw that the key step in obtaining the normal equations was to take the partial derivatives of the objective function with respect to each parameter, setting these equal to zero. The general form of this operation is... [Pg.49]

We wish to apply weighted linear least-squares regression to Eq. (6-2), the linearized form of the Arrhenius equation. Let us suppose that our kinetic studies have provided us with data consisting of Tj, and for at least three temperatures, where o, is the experimental standard deviation of fc,. We will assume that the error in T is negligible relative to that in k. For convenience we write Eq. (6-2) as... [Pg.247]

Finally, from Eq. (2-78), we have the normal equations for weighted linear least-squares regression ... [Pg.248]

Equation (6-19) was said to provide a fit as good as or better than those with other equations. The parameters were evaluated by fixing C and carrying out a linear least-squares regression of In k on T C was then altered and the procedure was repeated. The residual sum of squares was taken as a criterion of best fit. [Pg.253]

Once a linear relationship has been shown to have a high probability by the value of the correlation coefficient (r), then the best straight line through the data points has to be estimated. This can often be done by visual inspection of the calibration graph but in many cases it is far better practice to evaluate the best straight line by linear regression (the method of least squares). [Pg.145]

Classical least-squares (CLS), sometimes known as K-matrix calibration, is so called because, originally, it involved the application of multiple linear regression (MLR) to the classical expression of the Beer-Lambert Law of spectroscopy ... [Pg.51]

Multiple Linear Regression (MLR), Classical Least-Squares (CLS, K-matrix), Inverse Least-Squares (ILS, P-matrix)... [Pg.191]

The method of least squares provides the most powerful and useful procedure for fitting data. Among other applications in kinetics, least squares is used to calculate rate constants from concentration-time data and to calculate other rate constants from the set of -concentration values, such as those depicted in Fig. 2-8. If the function is linear in the parameters, the application is called linear least-squares regression. The more general but more complicated method is nonlinear least-squares regression. These are examples of linear and nonlinear equations ... [Pg.37]

Thus, Tis a linear function of the new independent variables, X, X2,. Linear regression analysis is used to ht linear models to experimental data. The case of three independent variables will be used for illustrative purposes, although there can be any number of independent variables provided the model remains linear. The dependent variable Y can be directly measured or it can be a mathematical transformation of a directly measured variable. If transformed variables are used, the htting procedure minimizes the sum-of-squares for the differences... [Pg.255]

The experiments were carried out in random order and the responses analyzed with the program X-STAT(11) which runs on an IBM PC computer. The model was the standard quadratic polynomial, and the coefficients were determined by a linear least-squares regression. [Pg.78]


See other pages where Linear regression squares is mentioned: [Pg.2966]    [Pg.497]    [Pg.16]    [Pg.714]    [Pg.714]    [Pg.715]    [Pg.718]    [Pg.722]    [Pg.244]    [Pg.118]    [Pg.168]    [Pg.426]    [Pg.849]    [Pg.41]    [Pg.250]    [Pg.8]    [Pg.210]    [Pg.28]    [Pg.361]    [Pg.197]    [Pg.211]    [Pg.3]    [Pg.131]    [Pg.133]    [Pg.300]   


SEARCH



Complex Non-Linear Regression Least-Squares (CNRLS) for the Analysis of Impedance Data

Complex non-linear regression least-squares

Complex non-linear regression least-squares CNRLS)

Least squares linear regression analysi

Least squares linear regression continued)

Least-squares linear regression

Least-squares linear regression analysis of variable temperature

Linear least-squares regression analysis

Linear least-squares regression analysis kinetic data

Linear least-squares regression model

Linear regression

Multiple linear least squares regression

Multiple linear least squares regression MLLSR)

Multiple linear regression and partial least squares

Multiple linear regression inverse least squares model

Multiple linear regression. Least squares fitting of response surface models

Non-linear least-squares regression

Nonmatrix Solutions to the Linear, Least-Squares Regression Problem

Ordinary least-squares linear regression coefficients

Regression analysis linear least squares method

Simple linear least squares regression

Simple linear least squares regression SLLSR)

Statistical Formulas Used in Linear Regression (Least Squares) Analyses

The Method of Least Squares and Simple Linear Regression

© 2024 chempedia.info