Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear carbon atoms

Polyethyleneglycol ethers. These compds are recommended as addns to gelatin Dynamite in quantities of about 0.4% to improve plasticity. They usually.contain at least 8 linear carbon atoms and at least two adjacent ethyleneoxy groups... [Pg.816]

The in the second and fourth structures indicates the linear carbon atom, which might... [Pg.586]

Draw all isomers of the formula CeHi2Cl2 that have six-linear carbon atoms. Indicate which of these isomers have geminal dichloride and which have vicinal dichloride structures. [Pg.349]

The ROSDAL syntax is characterized by a simple coding of a chemical structure using alphanumeric symbols which can easily be learned by a chemist [14]. In the linear structure representation, each atom of the structure is arbitrarily assigned a unique number, except for the hydrogen atoms. Carbon atoms are shown in the notation only by digits. The other types of atoms carry, in addition, their atomic symbol. In order to describe the bonds between atoms, bond symbols are inserted between the atom numbers. Branches are marked and separated from the other parts of the code by commas [15, 16] (Figure 2-9). The ROSDAL linear notation is rmambiguous but not unique. [Pg.25]

Let us illustrate the meaning of F by the example of carbon atom 1 in the linear, three-carbon allyl anion C3Hg. There are two carbon atoms other than Ci, one adjacent and the other nonadjacent. Equation (8-44) has three temis, one for each carbon atom... [Pg.250]

Using a multiple linear regression computer program, a set of substituent parameters was calculated for a number of the most commonly occurring groups. The calculated substituent effects allow a prediction of the chemical shifts of the exterior and central carbon atoms of the allene with standard deviations of l.Sand 2.3 ppm, respectively Although most compounds were measured as neat liquids, for a number of compounds duplicatel measurements were obtained in various solvents. [Pg.253]

On nonpolar columns, the compounds of a homologous series separate as a function of their boiling points, and linear relationships have been established between the logarithms of the retention volumes and the number of carbon atoms in the 2-, 4-, and 5-positions (see Fig. III-l). [Pg.359]

Aldehydes. When the group —C(=0)H, usually written —CHO, is attached to carbon at one (or both) end(s) of a linear acyclic chain the name is formed by adding the suffix -al (or -dial) to the name of the hydrocarbon containing the same number of carbon atoms. Examples are butanal for CHjCHjCHjCHO and propanedial for, OHCCH CHO. [Pg.26]

Hydrogenation of polybutadiene converts both cis and trans isomers to the same linear structure and vinyl groups to ethyl branches. A polybutadiene sample of molecular weight 168,000 was found by infrared spectroscopy to contain double bonds consisting of 47.2% cis, 44.9% trans, and 7.9% vinyl. After hydrogenation, what is the average number of backbone carbon atoms between ethyl side chains ... [Pg.67]

Polyethylene. The crystal structure of this polymer is essentially the same as those of linear alkanes containing 20-40 carbon atoms, and the values of Tjj and AHf j are what would be expected on the basis of an extrapolation from data on the alkanes. Since there are no chain substituents or intermolecular forces other than London forces in polyethylene, we shall compare other polymers to it as a reference substance. [Pg.208]

Of course, in reactions (5.A) and (5.B) the hydrocarbon sequences R and R can be the same or different, contain any number of carbon atoms, be linear or cyclic, and so on. Likewise, the general reactions (5.C) and (5.E) certainly involve hydrocarbon sequences between the reactive groups A and B. The notation involved in these latter reactions is particularly convenient, however, and we shall use it extensively in this chapter. It will become clear as we proceed that the stoichiometric proportions of reactive groups-A and B in the above notation—play an important role in determining the characteristics of the polymeric product. Accordingly, we shall confine our discussions for the present to reactions of the type given by (5.E), since equimolar proportions of A and B are assured by the structure of this monomer. [Pg.275]

Primary human skin irritation of tetradecanol, hexadecanol, and octadecanol is nil they have been used for many years ia cosmetic creams and ointments (24). Based on human testing and iudustrial experience, the linear, even carbon number alcohols of 6—18 carbon atoms are not human skin sensitizers, nor are the 7-, 9- and 11-carbon alcohols and 2-ethylhexanol. Neither has iudustrial handling of other branched alcohols led to skin problems. Inhalation hazard, further mitigated by the low vapor pressure of these alcohols, is slight. Sustained breathing of alcohol vapor or mist should be avoided, however, as aspiration hazards have been reported (25). [Pg.446]

The Ziegler process, based on reactions discovered in the 1950s, produces predorninandy linear, primary alcohols having an even number of carbon atoms. The process was commercialized by Continental Oil Company in the United States in 1962, by Condea Petrochemie in West Germany (a joint venture of Continental Oil Company and Deutsche Erdid, A.G.) in 1964, by Ethyl Corporation in the United States in 1965, and by the USSR in 1983. [Pg.455]

Fig. 2. Dependence of olefin reactivity on its carbon atom number when linear a-olefins are copolymerized with ethylene. Fig. 2. Dependence of olefin reactivity on its carbon atom number when linear a-olefins are copolymerized with ethylene.
Butene. Commercial production of 1-butene, as well as the manufacture of other linear a-olefins with even carbon atom numbers, is based on the ethylene oligomerization reaction. The reaction can be catalyzed by triethyl aluminum at 180—280°C and 15—30 MPa ( 150 300 atm) pressure (6) or by nickel-based catalysts at 80—120°C and 7—15 MPa pressure (7—9). Another commercially developed method includes ethylene dimerization with the Ziegler dimerization catalysts, (OR) —AIR, where R represents small alkyl groups (10). In addition, several processes are used to manufacture 1-butene from mixed butylene streams in refineries (11) (see BuTYLENEs). [Pg.425]

The 0x0 process is employed to produce higher alcohols from linear and branched higher olefins. Using a catalyst that is highly selective for hydroformylation of linear olefins at the terminal carbon atom. Shell converts olefins from the Shell higher olefin process (SHOP) to alcohols. This results in a product that is up to 75—85% linear when a linear feedstock is employed. Other 0x0 processes, such as those employed by ICI, Exxon, and BASE (all in Europe), produce oxo-alcohols from a-olefin feedstocks such alcohols have a linearity of about 60%. Enichem, on the other hand, produces... [Pg.441]

Properties. Boron carbide has a rhombohedral stmcture consisting of an array of nearly regular icosahedra, each having twelve boron atoms at the vertices and three carbon atoms ia a linear chain outside the icosahedra (3,4,6,7). Thus a descriptive chemical formula would be [12075-36-4]. [Pg.219]

Oligomerization of Ethylene. 1-Butene is a small by-product in the production of linear alpha-olefins by oligomerisation of ethylene. Linear alpha-olefins have one double bond at the terminal position and comprise the homologous series of compounds with carbon atoms between 4 and 19. The primary use of alpha-olefins is in the detergent industry. About 245,000 t/yr of 1-butene was produced for chemical use in the Gulf Coast of the United States in 1988 (72). [Pg.368]


See other pages where Linear carbon atoms is mentioned: [Pg.337]    [Pg.16]    [Pg.17]    [Pg.108]    [Pg.337]    [Pg.16]    [Pg.17]    [Pg.108]    [Pg.89]    [Pg.855]    [Pg.187]    [Pg.177]    [Pg.570]    [Pg.6]    [Pg.442]    [Pg.445]    [Pg.457]    [Pg.458]    [Pg.264]    [Pg.367]    [Pg.380]    [Pg.382]    [Pg.425]    [Pg.497]    [Pg.216]    [Pg.223]    [Pg.246]    [Pg.385]    [Pg.255]    [Pg.287]    [Pg.11]    [Pg.64]    [Pg.265]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Carbon linear

Carbonate linear

© 2024 chempedia.info