Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limit tests definition

Definition The limit of detection is a parameter of limit tests. It is the lowest concentration of analyte in a sample that can be detected, but not necessarily quantitated, under the stated experimental conditions. Thus, limit tests merely substantiate that the analyte concentration is above or below a certain level. The limit of detection is usually expressed as the concentration of analyte (e.g., percentage, milligrams per gram, parts per billion) in the sample. [Pg.1021]

The test ensures that the substance to be examined has a total content of alkaline-earth metals, which is below the limit defined in the individual monograph. Originally, calcium, strontium, and barium were called alkaline-earth metals because of their ability to form basic oxides. Earth is an old word for oxides. Nowadays, the term is most often used for the Group II metals in the periodic table. The selectivity of the limit test suggests that the original definition be applied in the present monograph. [Pg.122]

Significance tests, however, also are subject to type 2 errors in which the null hypothesis is falsely retained. Consider, for example, the situation shown in Figure 4.12b, where S is exactly equal to (Sa)dl. In this case the probability of a type 2 error is 50% since half of the signals arising from the sample s population fall below the detection limit. Thus, there is only a 50 50 probability that an analyte at the lUPAC detection limit will be detected. As defined, the lUPAC definition for the detection limit only indicates the smallest signal for which we can say, at a significance level of a, that an analyte is present in the sample. Failing to detect the analyte, however, does not imply that it is not present. [Pg.95]

While 30 ppm may be acceptable as a maximum probability of occurrence for a failure of low severity, it is not acceptable as severity increases. An example table of FMEA Severity Ratings was shown in Figure 2.20. In the definite return to manufacturer (a warranty return) or violation of statutory requirement region (S = 5 or S = 6), the designer would seek ways to enhance the process capability or else utilize some inspection or test process. Reducing d will reduce occurrence, as indicated by equation 2.11, but inspection or test is of limited efficiency. [Pg.68]

Opening segments of the IP2 PRA data analysis section describe the definitions of terms and concepts employed, the assumptions made, and limitations recognized during the data base construction. A set of 39 plant-specific component failure mode summaries established the basis for component service hour determinations, the number of failures, and the test data source for each failure mode given for each component. Generic data from WASH-1400, IEEE Std 500, and the LER data summaries on valves, pumps, and diesels were combined with plant-specific failure data to produce "updated" failure information. All the IP2 specialized component hardware failure data, both generic and updated, are contained in Table 1.5.1-4 (IP3 1.6.1-4). This table contains (by system, component, and failure mode) plant-specific data on the number of failures and service hours or demands. For some components, it was determined that specifications of the system was warranted because of its impact on the data values. [Pg.119]

The compressive data are of limited design value. They can be used for comparative material evaluation and design purposes if the conditions of the test approximate those of the application. The data are of definite value for materials that fail in the compressive test by a shattering fracture. On the other hand, for those that do not fail in this manner, the compressive information is arbitrary and is determined by selecting a point of compressive deformation at which it is considered that a complete failure of the material has taken place. About 10% of deformation are viewed in most cases as maximum. [Pg.311]

For standard deviations, an analogous confidence interval CI(.9jr) can be derived via the F-test. In contrast to Cl(Xmean), ClCij ) is not symmetrical around the most probable value because by definition can only be positive. The concept is as follows an upper limit, on is sought that has the quality of a very precise measurement, that is, its uncertainty must be very small and therefore its number of degrees of freedom / must be very large. The same logic applies to the lower limit. s/ ... [Pg.72]

Envlroiunental testing Is a critical element In this process since It enables the qualitative and quantitative determination of toxic chemicals In the environment and the definition of environmental pathways which may lead to human exposure This paper briefly reviews the overall process of health risk assessments and the particular role which environmental testing plays Recent efforts to assess environmental health risks In relation to Love Canal Illustrate both the usefulness and the limitations of environmental testing In risk assessment ... [Pg.8]

A waste is toxic under 40 CFR Part 261 if the extract from a sample of the waste exceeds specified limits for any one of eight elements and five pesticides (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, endrin, methoxychlor, toxaphene, 2,4-D and 2,4,5-TP Silvex using extraction procedure (EP) toxicity test methods. Note that this narrow definition of toxicity relates to whether a waste is defined as hazardous for regulatory purposes in the context of this chapter, toxicity has a broader meaning because most deep-well-injected wastes have properties that can be toxic to living organisms. [Pg.784]


See other pages where Limit tests definition is mentioned: [Pg.384]    [Pg.97]    [Pg.483]    [Pg.178]    [Pg.97]    [Pg.2849]    [Pg.139]    [Pg.246]    [Pg.38]    [Pg.3040]    [Pg.38]    [Pg.49]    [Pg.332]    [Pg.473]    [Pg.291]    [Pg.422]    [Pg.424]    [Pg.251]    [Pg.305]    [Pg.94]    [Pg.657]    [Pg.27]    [Pg.120]    [Pg.834]    [Pg.235]    [Pg.252]    [Pg.507]    [Pg.508]    [Pg.40]    [Pg.470]    [Pg.397]    [Pg.598]    [Pg.106]    [Pg.98]    [Pg.658]    [Pg.663]    [Pg.452]    [Pg.172]    [Pg.345]   
See also in sourсe #XX -- [ Pg.3058 ]




SEARCH



Limits definition

© 2024 chempedia.info