Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Light scattering polymer analysis

The latest trend is to smaller beads in smaller columns, as this saves eluent and shortens the time for a chromatographic analysis. This argument can be correct if only one suitable detector is used. However, these modern small columns are not optimal for a combination of detectors. So-called multiple detection is a combination of some detectors with different measurement principles (differential refractometer, spectral photometer, light-scattering detector, on-line viscometer) behind the last column, mostly in series, seldom in a branched ( parallel ) order. In this way, the tedious preparative fractionation of a polymer sample can often be avoided. [Pg.440]

There are still other surface analysis techniques including ellipsometry, surface enhanced Raman scattering, light scattering, nano-hardness measurements etc. which are used for specific investigations. It is, however, already evident from this discussion that many new and powerful techniques now are available which offer the capability of investigating various aspects of polymer surfaces on a molecular level. Some of those techniques are surface specific while others can be used for the analysis of buried interfaces, too. [Pg.370]

In a seminal and seemingly forgotten paper, Burchard et al. " discussed the analysis of various polymer architectures based on integrated light scattering (LS) and quasielastic light scattering (QELS). They considered mono- and polydisperse linear and star-branched polymers with/number of arms ( rays ), and random polycondensates of Af or ABC type (identical or different... [Pg.205]

Often in hyperbranched polymers obtained via SCVP, it is not possible to determine the DB directly via NMR analysis. Therefore, other methods, for example, viscosity measurements and light-scattering methods have to be used to confirm the compact structure of a hyperbranched polymer. Such characterizations of hyperbranched (meth)acrylates will be discussed in the next section. [Pg.14]

Apart from their utility in determining the correction factor 1/P( ), light-scattering dissymmetry measurements afford a measure of the dimensions of the randomly coiled polymer molecule in dilute solution. Thus the above analysis of measurements made at different angles yields the important ratio from which the root-mean-square... [Pg.297]

Light scattering (nephelometry) was used as a detection system for gly-cosaminoglycans from urine, eluted from a DEAE Sephadex (Pharmacia Biotechnology Uppsala, Sweden) A-25 column.68 This technique has been more recently applied to protein characterization.69 Interferometry was used for analysis of dextran eluted from a size exclusion column.70 One of the problems of electrochemical detection is that it is relatively insensitive to polymers. Because many of the materials discussed below (DNA, proteins, and polysaccharides) are polymeric, a brief mention of some alternative... [Pg.224]

Branching in the polymer chain affects the relationship between retention and molecular weight.83 Universal calibration has been used with some success in branched polymers, but there are also pitfalls. Viscosimetry84-91 and other instrumental methods have proved to be useful. A computer simulation of the effects of branching on hydrodynamic volume and the detailed effects observable in GPC is available in the literature.92 93 In copolymer analysis, retention may be different for block and random copolymers, so universal calibration may be difficult. However, a UV-VIS detector, followed by a low-angle light-scattering (LALLS) detector and a differential... [Pg.330]

Detection is also frequently a key issue in polymer analysis, so much so that a section below is devoted to detectors. Only two detectors, the ultra-violet-visible spectrophotometer (UV-VIS) and the differential refractive index (DRI), are commonly in use as concentration-sensitive detectors in GPC. Many of the common polymer solvents absorb in the UV, so UV detection is the exception rather than the rule. Refractive index detectors have improved markedly in the last decade, but the limit of detection remains a common problem. Also, it is quite common that one component may have a positive RI response, while a second has a zero or negative response. This can be particularly problematic in co-polymer analysis. Although such problems can often be solved by changing or blending solvents, a third detector, the evaporative light-scattering detector, has found some favor. [Pg.333]

With a three-component system, such as a polymer in an aqueous salt solution, preferential adsorption of one component to the polymer can affect the analysis of light-scattering data.199 Such interactions can affect the SRI. Therefore, measurements of the SRI must be made at constant chemical potential. Constant chemical potential is achieved experimentally by dialyzing the solvent and polymer solution to equilibrium through a membrane permeable to the solvent but impermeable to the polymer.199... [Pg.348]

Schultz, R. and Engelhardt, H., The application of an evaporative light-scattering detector in polymer analysis, Chromatographia, 29, 517, 1990. [Pg.369]

Flame Photometry and Gas Chromatography (CyTerra) -Aerodynamic Particle Size and Shape Analysis (BIRAL) -Flow Cytometry (Luminex, LLNL) -Semiconductor-Based Ultraviolet Light (DARPA) -Polymer Fluorochrome (Echo Technology) -Laser-Induced Breakdown Spectroscopy -Raman Scattering -Infrared Absorption -Terahertz Spectroscopy -UV LIDAR... [Pg.40]

We report here the results of our recent studies of poly(alkyl/arylphosphazenes) with particular emphasis on the following areas (1) the overall scope of, and recent improvements in, the condensation polymerization method (2) the characterization of a representative series of these polymers by dilute solution techniques (viscosity, membrane osmometry, light scattering, and size exclusion chromatography), thermal analysis (TGA and DSC), NMR spectroscopy, and X-ray diffraction (3) the preparation and preliminary thermolysis reactions of new, functionalized phosphoranimine monomers and (4) the mechanism of the polymerization reaction. [Pg.284]

Detection in 2DLC is the same as encountered in one-dimensional HPLC. A variety of detectors are presented in Table 5.2. The choice of detector is dependent on the molecule being detected, the problem being solved, and the separation mode used for the second dimension. If MS detection is utilized, then volatile buffers are typically used in the second-dimension separation. Ultraviolet detection is used for peptides, proteins, and any molecules that contain an appropriate chromophore. Evaporative light scattering detection has become popular for the analysis of polymers and surfactants that do not contain UV chromophores. Refractive index (RI) detection is generally used with size exclusion chromatography for the analysis of polymers. [Pg.109]

Schultz, R., Engelhardt, H. (1990). The Application of an Evaporative Light Scattering Detector in Polymer Analysis. Chromatographia 29, 517. [Pg.422]


See other pages where Light scattering polymer analysis is mentioned: [Pg.105]    [Pg.124]    [Pg.1143]    [Pg.236]    [Pg.332]    [Pg.205]    [Pg.294]    [Pg.121]    [Pg.410]    [Pg.362]    [Pg.276]    [Pg.33]    [Pg.302]    [Pg.60]    [Pg.342]    [Pg.560]    [Pg.77]    [Pg.177]    [Pg.3]    [Pg.81]    [Pg.210]    [Pg.389]    [Pg.446]    [Pg.31]    [Pg.260]    [Pg.178]    [Pg.744]    [Pg.14]    [Pg.355]    [Pg.376]    [Pg.32]    [Pg.260]    [Pg.271]    [Pg.153]    [Pg.166]    [Pg.223]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Light polymers

Light scattering analysis

Light scattering polymers

Polymers analysis

Scattering analyses

Scattering polymers

© 2024 chempedia.info