Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis aluminas

Many solids have foreign atoms or molecular groupings on their surfaces that are so tightly held that they do not really enter into adsorption-desorption equilibrium and so can be regarded as part of the surface structure. The partial surface oxidation of carbon blacks has been mentioned as having an important influence on their adsorptive behavior (Section X-3A) depending on conditions, the oxidized surface may be acidic or basic (see Ref. 61), and the surface pattern of the carbon rings may be affected [62]. As one other example, the chemical nature of the acidic sites of silica-alumina catalysts has been a subject of much discussion. The main question has been whether the sites represented Brpnsted (proton donor) or Lewis (electron-acceptor) acids. Hall... [Pg.581]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Mote stable catalysts ate obtained by using fluorinated graphite or fluorinated alumina as backbones, and Lewis acid halides, such as SbF, TaF, and NbF, which have a relatively low vapor pressure. These Lewis acids ate attached to the fluorinated soHd supports through fluorine bridging. They show high reactivity in Friedel-Crafts type reactions including the isomerization of straight-chain alkanes such as / -hexane. [Pg.565]

Dehydrochlorination of chlorinated derivatives such as 1,1,2-trichloroethane may be carried out with a variety of catalytic materials, including Lewis acids such as aluminum chloride. Refluxing 1,1,2-trichlorethane with aqueous calcium hydroxide or sodium hydroxide produces 1,1-dichloroethylene in good yields (22), although other bases such as magnesium hydroxide have been reported (23). Dehydrochlorination of the 1,1,1-trichloroethane isomer with catalytic amounts of a Lewis acid also yields 1,1-dichloroethylene. Other methods to dehydrochlorinate 1,1,1-trichloroethane include thermal dehydrochlorination (24) and by gas-phase reaction over an alumina catalyst or siUca catalyst (25). [Pg.509]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Catalyst acid properties depend on several parameters, including method of preparation, dehydration temperature, silica-to-alumina ratio, and the ratio of Bronsted to Lewis acid sites. [Pg.131]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

Several aluminum- and titanium-based compounds have been supported on silica and alumina [53]. Although silica and alumina themselves catalyze cycloaddition reactions, their catalytic activity is greatly increased when they complex a Lewis acid. Some of these catalysts are among the most active described to date for heterogeneous catalysis of the Diels-Alder reactions of carbonyl-containing dienophiles. The Si02-Et2AlCl catalyst is the most efficient and can be... [Pg.115]

Chiral Lewis acids supported on silica gel and alumina, and their use as catalysts in Diels-Alder reactions of methacrolein and bromoacrolein [103]... [Pg.133]

Silica gel [11] or alumina [11a, 12] alone, or silica and alumina together modified by Lewis-acid treatment [13] and zeolites [14], have been widely used as catalysts in Diels-Alder reactions, and these solids have also been tested as catalysts in asymmetric Diels-Alder reactions [12,13b,14]. Activated silica gel and alumina at 140 °C were used [15] to catalyze the asymmetric cycloaddition of (-)-menthyl-N-acetyl-a, S-dehydroalaninate (3) (R = NHCOMe) with cyclopentadiene in the key step for synthesizing optically active cycloaliphatic a-amino acids. When the reactions were carried out in the absence of solvent, a higher conversion was obtained. Some results are reported in Table 4.5 and compared with those obtained by using silica and alumina modified by treatment with Lewis acids. Silica gel gives a reasonable percentage of conversion after 24 h with complete diastereofacial selectivity in exo addition. [Pg.146]

This reaction is analogous to 10-7. It may be acid (including Lewis acids),base, or alumina catalyzed, occur with electrolysis, and may occur by either an SnI or Sn2 mechanism. Many of the P-hydroxy ethers produced in this way are valuable solvents, for example, diethylene glycol, Cellosolve, and so on. Reaction with thiols leads to hydroxy thioethers. Aziridines can similarly be converted to P-amino ethers. [Pg.481]

Due to the formation of Ca/Al mixed oxide on the surface, the Ca -modified alumina has a completely different structure compared to the spinel one This leads to a different type of surface Lewis acid/basic sites, rendering the catalyst 30 times less active. [Pg.180]

The fluorination of chromium oxide caused an increase of surface site Lewis acidity. Kemnitz and al.[12] as well as Peri [13], showed that on fluorinated alumina the progressive substitution of F for O and OH led, thanks to inductive attracting effect of fluorine, to an increase of the Lewis acidity of a sites. Hence the dehydrofluorination reaction was ftivoured on strong acide sites. [Pg.384]

While our discussion will mainly focus on sifica, other oxide materials can also be used, and they need to be characterized with the same rigorous approach. For example, in the case of meso- and microporous materials such as zeolites, SBA-15, or MCM materials, the pore size, pore distribution, surface composition, and the inner and outer surface areas need to be measured since they can affect the grafting step (and the chemistry thereafter) [5-7]. Some oxides such as alumina or silica-alumina contain Lewis acid centres/sites, which can also participate in the reactivity of the support and the grafted species. These sites need to be characterized and quantified this is typically carried out by using molecular probes (Lewis bases) such as pyridine [8,9],... [Pg.153]

Carotenoid radical formation and stabilization on silica-alumina occurs as a result of the electron transfer between carotenoid molecule and the Al3+ electron acceptor site. Both the three-pulse ESEEM spectrum (Figure 9.3a) and the HYSCORE spectrum (Figure 9.3b) of the canthaxanthin/ A1C13 sample contain a peak at the 27A1 Larmor frequency (3.75 MHz). The existence of electron transfer interactions between Al3+ ions and carotenoids in A1C13 solution can serve as a good model for similar interactions between adsorbed carotenoids and Al3+ Lewis acid sites on silica-alumina. [Pg.169]

The amount of Lewis acid to be used is depicted as an effective amount and a minimum limit of 0.5 mole equivalent with respect to the sulfmated compound concentration was mentioned. A wide variety of Lewis acids was mentioned to be useful for the present invention in the patent document, but only copper (II) compounds were claimed. The way in which the Lewis acid is used (either as a homogeneous or a heterogeneous phase), was reported to be irrelevant. So, it could be employed in solution in the reaction medium or insoluble as powders or on a solid support, such as alumina or a zeolite. The Lewis acid is supposed to be acting as a catalyst in the desulfination process. The temperature and pressure conditions for this reaction are substantially higher than the microbial conditions. The temperature and pressure conditions did not form part of any claim, but the document stipulates values between 50°C and 100°C, and 10 and 15psi, respectively. The quantitative effectiveness or conversion values of this reaction were not given, but it looks like it would diminish the advantages of a biocatalytic process. [Pg.319]

Lewis acids such as alumina (AI2O3) are often used in industrial, fas phase dehydrations. [Pg.291]

The practical applications of NaBH4 reductions on mineral surfaces for in situ generated SchifFs bases have been successfully demonstrated. The solid-state reductive amination of carbonyl compounds on various inorganic solid supports such as alumina, clay, silica etc. and especially on K 10 clay surface rapidly afford secondary and tertiary amines [126]. Clay behaves as a Lewis acid and also provides water from its interlayers thus enhancing the reducing ability of NaBH4 [22],... [Pg.203]

Alumina, silica, clays, and zeolites are increasingly used as acidic or basic supports [26], Cycloaddition reactions often require Lewis-acid catalysts if good yields are to be obtained. Clay and doped silica gel catalysts have emerged as useful alternatives to the use of Lewis acids. Cycloaddition offuran (5) under solvent-free conditions, catalyzed by K10 montmorillonite, results in a decrease in the reaction time the endo-exo relationship is no different that obtained by use of classical heating (Scheme 9.2) [27]. [Pg.298]

Several other miscellaneous heterogeneously catalyzed reactions have been performed in the liquid phase. Hexane was successfully oxyfunctionalized with aqueous hydrogen peroxide by use of the zeolite TS-1 catalyst [50] and microwave-promoted acetalization of a number of aldehydes and ketones with ethylene glycol proceeded readily (2 min) in the presence both of heterogeneous (acidic alumina) and homogeneous (PTSA, Lewis acids) catalysts [51], Scheme 10.7. [Pg.354]

Aluminum is produced commercially by the electrolysis of cryolite, Na3AlF6, but bauxite, A1203, is the usual naturally occurring source of the metal. The oxide is a widely used catalyst which has surface sites that function as a Lewis acid. A form of the oxide known as activated alumina has the ability to adsorb gases and effectively remove them. Other uses of the oxide include ceramics, catalysts, polishing compounds, abrasives, and electrical insulators. [Pg.228]

Also, manganese added to cobalt on activated carbon catalysts resulted in a decrease in bulk carbide formation during reduction and a decrease in the subsequent deactivation rate.84 Magnesium and yttrium added to the support in alumina-supported cobalt catalysts showed a lower extent of carburization. This was explained by a decrease in Lewis acidity of the alumina surface in the presence of these ions.87... [Pg.71]

Two such well studied systems are pyridine chemisorbed on alumina (15) and pyridine chemisorbed on silica-alumina (16). It had been previously shown that alumina contains only sites which adsorb pyridine in a Lewis acid-base fashion whereas silica-alumina has both Lewis and Bronsted acid sites. These two different kinds of sites are distinguishable by the characteristic vibrational bands of pyridine adducts at these sites (see Table I). Photoacoustic and transmission results are compared in Table II. Note that the PA signal strength depends on factors such as sample particle size and volumes of solid sample and transducing... [Pg.397]

Table I. Assignments of Pyridine Chemisorbed on Silica-Alumina As Lewis Acid Sites (LPY) and Bronsted Acid Sites (BPY)... Table I. Assignments of Pyridine Chemisorbed on Silica-Alumina As Lewis Acid Sites (LPY) and Bronsted Acid Sites (BPY)...

See other pages where Lewis aluminas is mentioned: [Pg.719]    [Pg.734]    [Pg.15]    [Pg.1869]    [Pg.353]    [Pg.323]    [Pg.334]    [Pg.227]    [Pg.268]    [Pg.193]    [Pg.461]    [Pg.179]    [Pg.268]    [Pg.96]    [Pg.624]    [Pg.161]    [Pg.95]    [Pg.143]    [Pg.10]    [Pg.16]    [Pg.366]    [Pg.123]    [Pg.20]    [Pg.90]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Aluminas Lewis acid sites

Lewis alumina supported

The Lewis Acid Sites of Aluminas and SAs

© 2024 chempedia.info