Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead dimeric

Lead oxide (Table 7) and the lead dimer (Table 8) are reasonably well studied by both relativistic density functional and ab initio methods. [Pg.640]

Chiefly in an hydrophobic medium, a base can extract the proton on position 2 leading to a reactive intermediate (able to give subsequent condensation) that could be an ylid (35, 36) or a carbene (37), though no dimer has ever been isolated as is the case with benzothiazolium (32, 38). Two mechanisms have been proposed for explaining the particular reactivity of thiazolium ... [Pg.34]

Many monomeric heterocyclic anhydrobases can be isolated now using specific methods (44), but application of these methods to thiazole ring did not succeed however, appropriate conditions lead to the separation of a dimer, the structure of which has been established by its NMR Spectra and chemical reactivity (26). The most probable mechanism of its formation appears identical with the one previously described in the benzothiazolium series (24). A second molecule of quaternary salt A3... [Pg.37]

The action of formaldehyde on 2-acetamido-4-inethylselenazole can lead to dimerization in the 5-position (Scheme 17) (4),... [Pg.231]

These results show that in the phenylation of thiazole with benzoyl peroxide two secondary reactions enter in competition the attack of thiazole by benzoyloxy radicals, leading to a mixture of thiazolyl benzoates, and the formation of dithiazolyle through attack of thiazole by the thiazolyl radicals resulting from hydrogen abstraction on the substrate and from the dimerization of these radicals. This last reaction is less important than in the case of thiophene but more important than in the case of pyridine (398). [Pg.109]

The enzyme catalyzed reactions that lead to geraniol and farnesol (as their pyrophosphate esters) are mechanistically related to the acid catalyzed dimerization of alkenes discussed m Section 6 21 The reaction of an allylic pyrophosphate or a carbo cation with a source of rr electrons is a recurring theme m terpene biosynthesis and is invoked to explain the origin of more complicated structural types Consider for exam pie the formation of cyclic monoterpenes Neryl pyrophosphate formed by an enzyme catalyzed isomerization of the E double bond m geranyl pyrophosphate has the proper geometry to form a six membered ring via intramolecular attack of the double bond on the allylic pyrophosphate unit... [Pg.1089]

The amide formation reaction (highlighted by the circle) leads to the production of a hydrogen-bonded dimer (ZZ) of the reaction product Z with the template Z. The dimer is in thermodynamic equilibrium with free template in the reaction medium. [Pg.211]

Single-Stack Acceptor. Simple charge-transfer salts formed from the planar acceptor TCNQ have a stacked arrangement with the TCNQ units facing each other (intermolecular distances of ca 0.3 nm (- 3). Complex salts of TCNQ such as TEA(TCNQ)2 consist of stacks of parallel TCNQ molecules, with cation sites between the stacks (17). The interatomic distance between TCNQ units is not always uniform in these salts, and formation of TCNQ dimers (as in TEA(TCNQ)2) and trimers (as in Cs2(TCNQ)Q can lead to complex crystal stmctures for the chainlike salts. [Pg.240]

Reactions with Aldehydes and Ketones. The base-catalyzed self-addition of acetaldehyde leads to formation of the dimer, acetaldol [107-89-1/, which can be hydrogenated to form 1,3-butanediol [107-88-0] or dehydrated to form crotonaldehyde [4170-30-3]. Crotonaldehyde can also be made directiy by the vapor-phase condensation of acetaldehyde over a catalyst (53). [Pg.50]

In the area of moleculady designed hot-melt adhesives, the most widely used resins are the polyamides (qv), formed upon reaction of a diamine and a dimer acid. Dimer acids (qv) are obtained from the Diels-Alder reaction of unsaturated fatty acids. Linoleic acid is an example. Judicious selection of diamine and diacid leads to a wide range of adhesive properties. Typical shear characteristics are in the range of thousands of kilopascals and are dependent upon temperature. Although hot-melt adhesives normally become quite brittle below the glass-transition temperature, these materials can often attain physical properties that approach those of a stmctural adhesive. These properties severely degrade as the material becomes Hquid above the melt temperature. [Pg.235]

Other Dimer Olefins. Olefins for plasticizer alcohols are also produced by the dimerization of isobutene [115-11-7] 4 8 codimerization of isobutene and / -butene [25167-67-3]. These highly branched octenes lead to a highly branched isononyl alcohol [68526-84-1] product. BASE, Ruhrchemie, ICl, Nippon Oxocol, and others have used this source. [Pg.458]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

The dimer of phosphonic acid, diphosphonic acid [36465-90-4] (pyrophosphoms acid), H4P2O3, is formed by the reaction of phosphoms trichloride and phosphonic acid in the ratio of 1 5. It is also formed by the thermal decomposition of phosphonic acid. Unlike the chemistry of phosphoric acid, thermal dehydration does not lead to polymers beyond the dimer extended dehydration leads to a disproportionation to condensed forms of phosphoric acid, such as [2466-09-3] and phosphine. [Pg.374]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]

In the presence of aluminum, oxidative degradation or dimerization supply HCl for the formation of aluminum chloride, which catalyzes further dimerization to hexachlorobutene. The latter is decomposed by heat to give more HCl. The result is a self-sustaining pathway to solvent decomposition. Sufficient quantities of aluminum can cause violent decomposition, which can lead to mnaway reactions (1,2). Commercial grades of trichloroethylene are stabilized to prevent these reactions in normal storage and use conditions. [Pg.23]

As shown, ia the case of chlotination of aEyl chloride, the resonance states of the chloroaEyl radical iatermediates are not symmetrical and their propagation reactions lead to the two different dichloropropene isomers ia an approximate 10 90 ratio (26). In addition, similar reactions result ia further substitution and addition with products such as trichloropropanes, trichloropropenes, tetrachloropropanes, etc ia diminisbing amounts. Propylene dimerization products such as 1,5-hexadiene, benzene, 1-chloropropane, 2-chloropropane, high boiling tars, and coke are also produced ia smaE amounts. [Pg.33]

Handling and Storage. Cyanamide solution dimerizes to dicyandiamide and urea with the evolution of heat and a gradual increase in alkalinity accelerating the reaction. Storage above 30°C without pH stabilizer leads to excessive dimerization and can result in violent exothermic polymerization. Cyanamide should be stored under refrigeration and the pH tested periodically. Stabilized cyanamide can be kept at ambient temperature for a few weeks. [Pg.370]

Currently, there is continuing work on an iadustry standard method for the direct determination of monomer, dimer, and trimer acids. Urea adduction (of the methyl esters) has been suggested as a means of determining monomer ia distilled dimer (74). The method is tedious and the nonadductiag branched-chain monomer is recovered with the polymeric fraction. A micro sublimation procedure was developed as an improvement on urea adduction for estimation of the polymer fraction. Incomplete removal of monomer esters or loss of dimer duriag distillation can lead to error (75). [Pg.116]


See other pages where Lead dimeric is mentioned: [Pg.478]    [Pg.642]    [Pg.643]    [Pg.478]    [Pg.642]    [Pg.643]    [Pg.500]    [Pg.1256]    [Pg.2547]    [Pg.388]    [Pg.342]    [Pg.312]    [Pg.38]    [Pg.273]    [Pg.182]    [Pg.75]    [Pg.151]    [Pg.386]    [Pg.196]    [Pg.516]    [Pg.450]    [Pg.473]    [Pg.181]    [Pg.34]    [Pg.428]    [Pg.431]    [Pg.516]    [Pg.82]    [Pg.20]    [Pg.440]    [Pg.38]    [Pg.261]    [Pg.36]    [Pg.284]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.205 ]




SEARCH



Lead dimer

Lead monoxide dimer

© 2024 chempedia.info