Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead acetate anhydride

Lead tetracetate. Red lead is warmed with acetic acid in the presence of sufficient acetic anhydride to combine with the water formed ... [Pg.199]

Excess of keten over the calculated quantity does not increase the yield it leads to more acetic anhydride being collected in the low boiling point fraction. [Pg.374]

Boron trifluoride method. Fit a 1 litre three-necked flask with a gas inlet tube, a gas outlet leading to an alkali trap (compare Fig. 11,8, laori for the unabsorbed boron trifluoride), and stopper the third neck. Place 68 g. (73 ml.) of pure, anhydrous acetone (1) and 255 g. (236 ml.) of A.R. acetic anhydride in the flask and cool in a freezing mixture of ice and salt. Connect the gas inlet tube through an empty wash bottle to a cylinder of commercial boron trifluoride (2), and bubble the gas through the reaction mixture at such a rate that 250 g. is absorb in about 5 hours (2 bubbles per second). Pour the reaction mixture into a solution... [Pg.862]

It may be pointed out that dehydration of p hydroxy esters with fused potassium hydrogen sulphate, acetic anhydride, phosphoric oxide or with tliionyl chloride in benzeue solution leads to ap unsiiturated esters containing some PY-unsaturated ester the proportion of the latter depends not only upon the structure of the ester but also upon the dehydrating agent used. Elehydration occasionally occurs during the reaction itself or upon attempted distillation. [Pg.874]

Hydrolysis of the azlactone leads to the acylaminooinnamic acid the latter may be be reduced catal3rtlcally (Adams PtOj catalyst 40 lb. p.s.i.) and then hydrolysed by hydrochloric acid to the amino acid. Alternatively, the azlactone (say, of a-benzylaminocinnamic acid) may undergo reduction and cleavage with phosphorus, hydriodic acid and acetic anhydride directly to the a-amino acid (d/ p phenylalanine). [Pg.908]

The kinetics of nitration in acetic anhydride are complicated. In addition to the initial reaction between nitric acid and the solvent, subsequent reactions occur which lead ultimately to the formation of tetranitromethane furthermore, the observation that acetoxylation accompanies the nitration of the homologues of benzene adds to this complexity. [Pg.77]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

In addition to the initial reaction between nitric acid and acetic anhydride, subsequent changes lead to the quantitative formation of tetranitromethane in an equimolar mixture of nitric acid and acetic anhydride this reaction was half completed in 1-2 days. An investigation of the kinetics of this reaction showed it to have an induction period of 2-3 h for the solutions examined ([acetyl nitrate] = 0-7 mol 1 ), after which the rate adopted a form approximately of the first order with a half-life of about a day, close to that observed in the preparative experiment mentioned. In confirmation of this, recent workers have found the half-life of a solution at 25 °C of 0-05 mol 1 of nitric acid to be about 2 days. ... [Pg.81]

Later experiments do not allow a clear choice between these alternatives. The high proportion of o-isomer formed when nitration is effected with acetyl nitrate in acetic anhydride is confirmed by the results of expts. 10-14 (table 5.5). The use of fuming, rather than pure nitric acid, in the preparation of the reagent, which may lead to nitration... [Pg.94]

If acetoxylation were a conventional electrophilic substitution it is hard to understand why it is not more generally observed in nitration in acetic anhydride. The acetoxylating species is supposed to be very much more selective than the nitrating species, and therefore compared with the situation in (say) toluene in which the ratio of acetoxylation to nitration is small, the introduction of activating substituents into the aromatic nucleus should lead to an increase in the importance of acetoxylation relative to nitration. This is, in fact, observed in the limited range of the alkylbenzenes, although the apparently severe steric requirement of the acetoxylation species is a complicating feature. The failure to observe acetoxylation in the reactions of compounds more reactive than 2-xylene has been attributed to the incursion of another mechan-104... [Pg.104]

The most suitable synthetic method for these products is the heterocyc-lization reaction of N-thioacyl derivatives of amino acids (202) with phosphorus tribromide (378, 442-450, 559, 560) or anhydrous trifluoroacetic acid (448, 449, 451, 452) (Scheme 103). Treatment of N-thioacyl amino acids with acetic anhydride leads directly to the thiazolylacetate without isolation of an intermediate thiazolinone (365. 452). 2-Alkoxy-derivatives of A-2-thiazoline-5-one, however, can be obtained without acetylation by this method (453, 454). [Pg.426]

Anilino vinyl derivatives of thiazolium (30, R = H) or acetanilido (30, R = C0CH3), as well as formyl methylene 30b (methods E-G), give asymmetrical dyes when condensed with a methyl reactive group of another species (Scheme 42). Mesosubstituted symmetrical or unsymmet-rical thiazolocyanines are obtainable via /S-alkylmercaptovinyl thiazolium derivatives (32) (methods H and I) (Scheme 43). a or /S carbon atoms of the trimethine chain can be substituted by acetyl when a dye is treated with acetic anhydride (method L). The hydrolysis of neocyanines lead to trimethine cyanine by fractional elimination of a composant chain (method K). [Pg.55]

Direct nitration of aniline and other arylamines fails because oxidation leads to the formation of dark colored tars As a solution to this problem it is standaid practice to first protect the ammo group by acylation with either acetyl chloride or acetic anhydride... [Pg.940]

Decomposition Reactions. Minute traces of acetic anhydride are formed when very dry acetic acid is distilled. Without a catalyst, equiUbrium is reached after about 7 h of boiling, but a trace of acid catalyst produces equiUbrium in 20 min. At equiUbrium, about 4.2 mmol of anhydride is present per bter of acetic acid, even at temperatures as low as 80°C (17). Thermolysis of acetic acid occurs at 442°C and 101.3 kPa (1 atm), leading by parallel pathways to methane [72-82-8] and carbon dioxide [124-38-9] and to ketene [463-51-4] and water (18). Both reactions have great industrial significance. [Pg.66]

Acylation. Reaction conditions employed to acylate an aminophenol (using acetic anhydride in alkaU or pyridine, acetyl chloride and pyridine in toluene, or ketene in ethanol) usually lead to involvement of the amino function. If an excess of reagent is used, however, especially with 2-aminophenol, 0,A/-diacylated products are formed. Aminophenol carboxylates (0-acylated aminophenols) normally are prepared by the reduction of the corresponding nitrophenyl carboxylates, which is of particular importance with the 4-aminophenol derivatives. A migration of the acyl group from the O to the N position is known to occur for some 2- and 4-aminophenol acylated products. Whereas ethyl 4-aminophenyl carbonate is relatively stable in dilute acid, the 2-derivative has been shown to rearrange slowly to give ethyl 2-hydroxyphenyl carbamate [35580-89-3] (26). [Pg.310]

Treatment of pyridine N-oxide (13) with acetic anhydride leads chiedy to 2-pyridone (16) formation (eq. 2) (11). [Pg.325]

Nitration of pyrroles by the usual methods leads to extensive degradation. However, nitration can be achieved with an equimolar nitric acid—acetic anhydride mixture at low temperatures. In the case of pyrrole, the reaction leads predominandy to substitution at the -position (34), ie, in the following 51% 3-nitropyrrole [5930-94-9] (21) and 13% 2-nitropyrrole [5919-26-6] (22). [Pg.357]

The analogous reaction between anhydrides and alkoxysilanes also produces acyloxysilanes. The direct reaction of acids with chlorosilanes does not cleanly lead to full substitution. Commercial production of methyltriacetoxysilane direcdy from methyltrichlorosilane and acetic acid has been made possible by the addition of small amounts of acetic anhydride or EDTA, or acceptance of dimethyltetraacetoxydisiloxane in the final room temperature vulcanising (RTV) appHcation (41—43). A reaction that leads to the formation of acyloxysilanes is the interaction of acid chlorides with silylamides. [Pg.40]

Nitration. It is difficult to control nitration of thiophene, which yields 2-nitrothiophene [609-40-9]. The strongly electropbilic nitronium ion leads to significant yields (12—15%) of 3-isomer. A preferred procedure is the slow addition of thiophene to an anhydrous mixture of nitric acid, acetic acid, and acetic anhydride. [Pg.19]

Manufacture of 2-acetylthiophenes involves direct reaction of thiophene or alkylthiophene with acetic anhydride or acetyl chloride. Preferred systems use acetic anhydride and have involved iodine or orthophosphoric acid as catalysts. The former catalyst leads to simpler workup, but has the disadvantage of leading to a higher level of 3-isomer in the product. Processes claiming very low levels of 3-isomer operate with catalysts that are proprietary, though levels of less than 0.5% are not easily attained. [Pg.21]

Removal of AT-oxide groups by PCI3 follows normal behaviour (63JCS6073), but with acetic anhydride the AAoxides (332) underwent a complex ring-opening reaction leading to (333), and an isomeric 8-alkoxy-6-oxide behaved similarly (75H(3)38l). [Pg.241]

Scheme 6 depicts a typical penicillin sulfoxide rearrangement (69JA1401). The mechanism probably involves an initial thermal formation of a sulfenic acid which is trapped by the acetic anhydride as the mixed sulfenic-acetic anhydride. Nucleophilic attack by the double bond on the sulfur leads to an episulfonium ion which, depending on the site of acetate attack, can afford either the penam (19) or the cepham (20). Product ratios are dependent on reaction conditions. For example, in another related study acetic anhydride gave predominantly the penam product, while chloroacetic anhydride gave the cepham product (7lJCS(O3540). The rearrangement can also be effected by acid in this case the principal products are the cepham (21) and the cephem (22 Scheme 7). Since these early studies a wide variety of reagents have been found to catalyze the conversion of a penicillin sulfoxide to the cepham/cephem ring system (e.g. 77JOC2887). Scheme 6 depicts a typical penicillin sulfoxide rearrangement (69JA1401). The mechanism probably involves an initial thermal formation of a sulfenic acid which is trapped by the acetic anhydride as the mixed sulfenic-acetic anhydride. Nucleophilic attack by the double bond on the sulfur leads to an episulfonium ion which, depending on the site of acetate attack, can afford either the penam (19) or the cepham (20). Product ratios are dependent on reaction conditions. For example, in another related study acetic anhydride gave predominantly the penam product, while chloroacetic anhydride gave the cepham product (7lJCS(O3540). The rearrangement can also be effected by acid in this case the principal products are the cepham (21) and the cephem (22 Scheme 7). Since these early studies a wide variety of reagents have been found to catalyze the conversion of a penicillin sulfoxide to the cepham/cephem ring system (e.g. 77JOC2887).
Phenyl isothiocyanate has been prepared from thiocarbanilide by the action of phosphorus pentoxide, hydrochloric acid, iodine, phosphoric acid, acetic anhydride, and nitrous acid. It has also been prepared from ammonium phenyl dithiocarbamate by the action of ethyl chlorocarbonate, copper sulfate lead carbonate, lead nitrate, ferrous sulfate,and zinc sulfate. ... [Pg.73]

Use of the imonium group for protection of enones was explored. Stability to peracids, lead tetraacetate, bromine, and acetic anhydride was claimed (727). The usual resistance of enamines (but not their salts) to additions of Grignard reagents was used for selective addition to a 3,17-diketosteroid by formation of the usual 3-monoenamine 728). [Pg.447]

In 1972, van Leusen, Hoogenboom and Siderius introduced the utility of TosMIC for the synthesis of azoles (pyrroles, oxazoles, imidazoles, thiazoles, etc.) by delivering a C-N-C fragment to polarized double bonds. In addition to the synthesis of 5-phenyloxazole, they also described reaction of TosMIC with /7-nitro- and /7-chloro-benzaldehyde (3) to provide analogous oxazoles 4 in 91% and 57% yield, respectively. Reaction of TosMIC with acid chlorides, anhydrides, or esters leads to oxazoles in which the tosyl group is retained. For example, reaction of acetic anhydride and TosMIC furnish oxazole 5 in 73% yield. ... [Pg.254]

Several improved methods for the preparation of known unsaturated azlactones as well as some interesting new compounds of this type have been reported. Crawford and Little observed that the direct use of 2-phenyl-5-oxazolone (1) in the Erlenmeyer reaction gave much improved yields (35-74%) of unsaturated azlactones with aliphatic aldehydes and with ketones such as acetone and cyclohexanone [Eq, (1)], The usual procedure of mixing a carbonyl compound, hippuric acid, acetic anhydride, and sodium (or lead) acetate affords poor yields in the aliphatic series. [Pg.76]

The chlorination of 45 in an acetic acid-acetic anhydride mixture leads to a pentachloro-acetoxy compound (49), but in acetic... [Pg.93]

Quite unstable. The yield was obtained by leading it to W-acetyl-1-methoxy derivative by reacting with diazomethane, followed by treatment with acetic anhydride. [Pg.105]

Rearrangements and other side-reactions are rare. The ester pyrolysis is therefore of some synthetic value, and is used instead of the dehydration of the corresponding alcohol. The experimental procedure is simple, and yields are generally high. Numerous alkenes have been prepared by this route for the first time. For the preparation of higher alkenes (> Cio), the pyrolysis of the corresponding alcohol in the presence of acetic anhydride may be the preferable method." The pyrolysis of lactones 9 leads to unsaturated carboxylic acids 10 ... [Pg.108]

Self-condensation of the substituted propiophenone, 15, by the pinacol reaction proceeds to give the glycol, 16, as the meso isomer. (If it is assumed that the transition state for this reaction resembles product, this stereoselectivity can be rationalized on the grounds of steric interaction compare A, which leads to the observed product, with B.) Dehydration under very specialized conditions (acetyl chloride, acetic anhydride) affords the bisstyrene-type diene (17). Removal of the acyl groups by means of base affords the synthetic estrogen, dien-... [Pg.102]

A heterocyclic ring may be used in place of one of the benzene rings without loss of biologic activity. The first step in the synthesis of such an agent starts by Friedel-Crafts-like acylation rather than displacement. Thus, reaction of sulfenyl chloride, 222, with 2-aminothiazole (223) in the presence of acetic anhydride affords the sulfide, 224. The amine is then protected as the amide (225). Oxidation with hydrogen peroxide leads to the corresponding sulfone (226) hydrolysis followed by reduction of the nitro group then affords thiazosulfone (227). ... [Pg.141]


See other pages where Lead acetate anhydride is mentioned: [Pg.199]    [Pg.865]    [Pg.96]    [Pg.221]    [Pg.75]    [Pg.78]    [Pg.64]    [Pg.364]    [Pg.85]    [Pg.308]    [Pg.318]    [Pg.67]    [Pg.506]    [Pg.95]    [Pg.278]    [Pg.284]    [Pg.129]    [Pg.156]    [Pg.157]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Lead acetate

© 2024 chempedia.info