Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Leaching polymers

Sintering has been used to produce a porous polytetrafluoroethylene (16). Cellulose sponges are the most familiar cellular polymers produced by the leaching process (123). Sodium sulfate crystals are dispersed in the viscose symp and subsequently leached out. Polyethylene (124) or poly(vinyl chloride) can also be produced in cellular form by the leaching process. The artificial leather-tike materials used for shoe uppers are rendered porous by extraction of salts (125) or by designing the polymers in such a way that they precipitate as a gel with many holes (126). [Pg.408]

Sulfur Polymer Cement. SPC has been proven effective in reducing leach rates of reactive heavy metals to the extent that some wastes can be managed solely as low level waste (LLW). When SPC is combined with mercury and lead oxides (both toxic metals), it interacts chemically to form mercury sulfide, HgS, and lead sulfide, PbS, both of which are insoluble in water. A dried sulfur residue from petroleum refining that contained 600-ppm vanadium (a carcinogen) was chemically modified using dicyclopentadiene and oligomer of cyclopentadiene and used to make SC (58). This material was examined by the California Department of Health Services (Cal EPA) and the leachable level of vanadium had been reduced to 8.3 ppm, well below the soluble threshold limit concentration of 24 ppm (59). [Pg.126]

Thermosetting Reactive Polymers. Materials used as thermosetting polymers include reactive monomers such as urea—formaldehyde, phenoHcs, polyesters, epoxides, and vinyls, which form a polymerized material when mixed with a catalyst. The treated waste forms a sponge-like material which traps the soHd particles, but not the Hquid fraction the waste must usually be dried and placed in containers for disposal. Because the urea—formaldehyde catalysts are strongly acidic, urea-based materials are generally not suitable for metals that can leach in the untrapped Hquid fractions. Thermosetting processes have greater utiHty for radioactive materials and acid wastes. [Pg.165]

Polymer-supported catalysts incorporating organometaUic complexes also behave in much the same way as their soluble analogues (28). Extensive research has been done in attempts to develop supported rhodium complex catalysts for olefin hydroformylation and methanol carbonylation, but the effort has not been commercially successful. The difficulty is that the polymer-supported catalysts are not sufftciendy stable the valuable metal is continuously leached into the product stream (28). Consequendy, the soHd catalysts fail to eliminate the problems of corrosion and catalyst recovery and recycle that are characteristic of solution catalysis. [Pg.175]

The alcohol swells the poly (ethyl methacrylate) beads, rapidly promoting diffusion of the plasticizer into the polymer. As a result of the polymer-chain entanglement, a gel is formed. The conditioner is applied to the denture and provides a cushioning effect alcohol and plasticizer are slowly leached out, and the material becomes rigid. To ensure resiliency, the conditioner must be replaced after a few days. Some materials exhibit high flow over a short period compared with others with low initial flow the latter remain active longer. [Pg.490]

The PGS obtained by Wang and coworkers was a kind of thermoset elastomer with the Young s modulus of 0.282 0.025 MPa, a tensile strain of at least 267 zE 59.4%, and a tensUe strength was at least 0.5 MPa. The mechanical properties of PGS were well consisted with that of some common soft tissues. Although PGS is a thermoset polymer, its prepolymer can be processed into various shapes by solving it in common organic solvents such as 1,3-dioxolane, tetrahydrofuran, isopropanol, ethanol, and iV,M-dimethylformamide. Porous scaffolds can be fabricated by salt leaching. [Pg.223]

Porous membranes have been prepared by leaching an additive from films and tubes of PCL (64,72). The procedure involves extrusion or casting blends of PCL and Pluronic F68, the latter being an FDA-approved oxyethylene-co-oxypropylene triblock copolymer. Treatment of the phase-separated blend with aqueous acetone or aqueous alcohols causes both swelling of the polymer and extraction of the Pluronic F68. The induced pore size and void volume may be controlled by the time, temperature, and solvent composition. [Pg.88]

Release of tetracycUne hydrochloride from PCL fibers was evaluated as a means of controlled administration to periodontal pockets (69). Only small amounts of the drug were released rapidly in vitro or in vivo, and poly(ethylene-co-vinyl acetate) gave superior results. Because Fickian diffusion of an ionic hydrochloride salt in a UpophiUc polymer is unlikely, and because PCL and EVA have essentially identical Fickian permeabilities, we attribute this result to leaching of the charged salt by a mechanism similar to release of proteins from EVA (73). Poly-e-caprolactone pellets have been found unsuitable for the release of methylene blue, another ionic species (74,75). In this case, blending PCL with polyvinyl alcohol (75% hydrolyzed) increased the release rate. [Pg.88]

Particular attention was given to the question of whether the catalysis with these systems is homogeneous or heterogeneous. It was found that the nature of the functional groups bound to the polymer backbone affects the rate and the extent of metal leaching, which also... [Pg.443]


See other pages where Leaching polymers is mentioned: [Pg.389]    [Pg.151]    [Pg.537]    [Pg.389]    [Pg.151]    [Pg.537]    [Pg.143]    [Pg.425]    [Pg.34]    [Pg.403]    [Pg.407]    [Pg.149]    [Pg.153]    [Pg.258]    [Pg.63]    [Pg.69]    [Pg.234]    [Pg.295]    [Pg.344]    [Pg.344]    [Pg.192]    [Pg.274]    [Pg.295]    [Pg.351]    [Pg.136]    [Pg.104]    [Pg.148]    [Pg.486]    [Pg.160]    [Pg.61]    [Pg.116]    [Pg.331]    [Pg.939]    [Pg.395]    [Pg.342]    [Pg.611]    [Pg.235]    [Pg.478]    [Pg.852]    [Pg.17]    [Pg.349]    [Pg.168]    [Pg.218]    [Pg.227]    [Pg.193]   
See also in sourсe #XX -- [ Pg.471 , Pg.493 ]




SEARCH



© 2024 chempedia.info