Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layer charging

Here, the only surface adsorption is taken to be that of the charge balancing the double-layer charge, and the electrochemical potential change is equated to a change in o- Integration then gives... [Pg.179]

A disadvantage of AES is that the intense electron beam easily causes damage to sensitive materials (polymers, insulators, adsorbate layers). Charging of insulating samples also causes serious problems. [Pg.1859]

The great advantage of the RDE over other teclmiques, such as cyclic voltannnetry or potential-step, is the possibility of varying the rate of mass transport to the electrode surface over a large range and in a controlled way, without the need for rapid changes in electrode potential, which lead to double-layer charging current contributions. [Pg.1936]

We have done our experiments with hectorite, which is a 2 1 smectite that develops negative layer charge by substitution of Li for Mg in the octahedral sheet.Samples were prepared by multiple exchange in 1.0 and 0.1 M CsCl solutions until essentially complete Cs-exchange was reached (97% of the interlayer cations). Temperature dependent data are essential to interpret the results, because there is rapid exchange of Cs among different interlayer sites at room temperature (RT). [Pg.158]

The background (residual) current that flows in the absence of the electroactive species of interest is composed of contributions due to double-layer charging process and redox reactions of impurities, as well as of the solvent, electrolyte, or electrode. [Pg.65]

The simplest, and by far the most common, detection scheme is the measurement of the current at a constant potential. Such fixed-potential amperometric measurements have the advantage of being free of double-layer charging and surface-transient effects. As a result, extremely low detection limits—on the order of 1-100 pg (about 10 14 moles of analyte)—can be achieved, hi various situations, however, it may be desirable to change the potential during the detection (scan, pulse, etc.). [Pg.92]

While from a structural point of view metal/solution and metal/vac-uum interfaces are qualitatively comparable even if quantitatively dissimilar, in the presence of ionic adsorbates the comparability is more difficult and is possible only if specific conditions are met.33 This is sketched in Fig. 7. A UHV metal surface with ions adsorbed on it is electrically neutral because of a counter-charge on the metal phase. These conditions cannot be compared with the condition of a = 0 in an electrochemical cell, but with the conditions in which the adsorbed charge is balanced by an equal and opposite charge on the metal surface, i.e., the condition of zero diffuse-layer charge. This is a further complication in comparing electrochemical and UHV conditions and has been pointed out in the case of Br adsorption on Ag single-crystal faces.88... [Pg.25]

Figure 7. Adsorption of an electronegative species from the gas phase onto a metal surface generates a dipolar layer due to electron transfer from the metal to the species. Adsorption of anions onto an electrode simulates the situation when the positive charge on the metal compensates for the adsorbed negative charge (zero diffuse-layer charge), and not when the charge on the metal is zero. Figure 7. Adsorption of an electronegative species from the gas phase onto a metal surface generates a dipolar layer due to electron transfer from the metal to the species. Adsorption of anions onto an electrode simulates the situation when the positive charge on the metal compensates for the adsorbed negative charge (zero diffuse-layer charge), and not when the charge on the metal is zero.
Figure 39. Current-time variation in nickel pitting dissolution in NaCl solution.89,91 1, double-layer charging current 2, fluctuation-diffusion current 3, minimum dissolution current 4, pit-growth current (Reprinted from M. Asanuma andR. Aogaki, Nonequilibrium fluctuation theory on pitting dissolution. II. Determination of surface coverage of nickel passive film, J. Chem. Phys. 106, 9938, 1997, Fig. 2. Copyright 1997, American Institute of Physics.)... Figure 39. Current-time variation in nickel pitting dissolution in NaCl solution.89,91 1, double-layer charging current 2, fluctuation-diffusion current 3, minimum dissolution current 4, pit-growth current (Reprinted from M. Asanuma andR. Aogaki, Nonequilibrium fluctuation theory on pitting dissolution. II. Determination of surface coverage of nickel passive film, J. Chem. Phys. 106, 9938, 1997, Fig. 2. Copyright 1997, American Institute of Physics.)...
The presence of a Faradaic electrode reaction of any kind competing with the double layer charging presents a problem in determining the purely capacitive current needed to calculate the surface charge. From a plot of 1 vs. (/ = total electrode current) with a fixed concentration of the ions of the electrode metal dissolved in solution, the surface charge can be obtained [65Butl]. (Data obtained with this method are labelled TC). [Pg.184]

Overbeek and Booth [284] have extended the Henry model to include the effects of double-layer distortion by the relaxation effect. Since the double-layer charge is opposite to the particle charge, the fluid in the layer tends to move in the direction opposite to the particle. This distorts the symmetry of the flow and concentration profiles around the particle. Diffusion and electrical conductance tend to restore this symmetry however, it takes time for this to occur. This is known as the relaxation effect. The relaxation effect is not significant for zeta-potentials of less than 25 mV i.e., the Overbeek and Booth equations reduce to the Henry equation for zeta-potentials less than 25 mV [284]. For an electrophoretic mobility of approximately 10 X 10 " cm A -sec, the corresponding zeta potential is 20 mV at 25°C. Mobilities of up to 20 X 10 " cmW-s, i.e., zeta-potentials of 40 mV, are not uncommon for proteins at temperatures of 20-30°C, and thus relaxation may be important for some proteins. [Pg.587]

FIG. 3 Orientations of alkylammonium ions in the galleries of clay layers with different layer charge densities. (From Ref. 28.)... [Pg.657]

The net current crossing the electrode at any time is the algebraic sum of the faradaic and various nonfaradaic currents. During the transition time, part of the net current is consumed for surface-layer charging and is not available for the primary electrode reaction. This part of the current is called the charging current It is highest at the start of the transition period, but toward the end of this period it falls to zero. The transition time of charging, depends on the value of current and on the system, and may vary within wide limits (between 0.1 ms and 1 s). [Pg.182]

In order to distinguish more clearly between effects induced by the varying potential and kinetic contributions, the continuous oxidation of the three Cj molecules was followed at a constant potential after the potential step. The corresponding faradaic and mass spectrometric (m/z = 44) current transients recorded after 3 minutes adsorption at 0.16 V and a subsequent potential step to 0.6 V (see Section 13.2) are reproduced in Figs. 13.5-13.7. In all cases, the faradaic current exhibits a small initial spike, which is associated with double-layer charging when stepping the electrode potential to 0.6 V. [Pg.434]

The tip current depends on the rate of the interfacial IT reaction, which can be extracted from the tip current vs. distance curves. One should notice that the interface between the top and the bottom layers is nonpolarizable, and the potential drop is determined by the ratio of concentrations of the common ion (i.e., M ) in two phases. Probing kinetics of IT at a nonpolarized ITIES under steady-state conditions should minimize resistive potential drop and double-layer charging effects, which greatly complicate vol-tammetric studies of IT kinetics. [Pg.398]

The XPS results obtained by Kolb and Hansen are reproduced in Fig. 6 and they clearly demonstrate not only that cations as well as anions stay on the surface but also that the amount of ions exhibits the expected potential dependence even in the case of specific adsorption. The preservation of the double layer charge after emersion was also shown by other techniques like charge monitoring [28] and electroreflectance measurements [29],... [Pg.87]


See other pages where Layer charging is mentioned: [Pg.424]    [Pg.352]    [Pg.195]    [Pg.159]    [Pg.215]    [Pg.636]    [Pg.233]    [Pg.40]    [Pg.62]    [Pg.133]    [Pg.134]    [Pg.135]    [Pg.284]    [Pg.456]    [Pg.29]    [Pg.18]    [Pg.166]    [Pg.295]    [Pg.417]    [Pg.428]    [Pg.429]    [Pg.440]    [Pg.217]    [Pg.151]    [Pg.138]    [Pg.35]    [Pg.273]    [Pg.458]    [Pg.175]    [Pg.175]    [Pg.243]    [Pg.244]    [Pg.146]    [Pg.147]   
See also in sourсe #XX -- [ Pg.31 , Pg.35 , Pg.102 , Pg.226 , Pg.271 ]

See also in sourсe #XX -- [ Pg.632 ]




SEARCH



Charge layer

© 2024 chempedia.info