Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser flash photolysis nucleophile reactions

Recognizing this, Richard and Jencks, proposed using azide ion as a clock for obtaining absolute reactivities of less stable cations. The basic assumption is that azide ion is reacting at the diffusion limit with the cation. Taking 5 x 10 M s as the second-order rate constant for this reaction, measurement of the selectivity fcaz Nu for the competition between azide ion and a second nucleophile then provides the absolute rate constant since feaz is known. The clock approach has now been applied to a number of cations, with measurements of selectivities by both competition kinetics and common ion inhibition. Other nucleophiles have been employed as the clock. The laser flash photolysis (LFP) experiments to be discussed later have verified the azide clock assumption. Cations with lifetimes in water less than about 100 ps do react with azide ion with a rate constant in the range 5-10x10 M- s-, " which means that rate constants obtained by a clock method can be viewed with reasonable confidence. [Pg.18]

Time resolved laser flash photolysis and electric spin resonance (ESR) spectroscopic investigations were used to get further insight to the reaction mechanism. Both methods demonstrate the formation of do using PET conditions [175,214,215], Upon addition of H donors the signal of do is quenched [214], The oxidation of do is followed by H abstraction from the H donor as shown in Scheme 9. Nucleophilic addition can be excluded because no alkoxyfullerenes were detected at all [173], After reduction of H-do, e.g., by electron transfer from the reduced sensitizer molecule H-do might recombine with R" to the final product. Decay experiments of do by the addition of alcohols support the proposed mechanism of H abstraction as a first step. The involved radical products reveal do as an electrophilic radical. [Pg.683]

A very interesting paper80 reported studies of the reactions of several substituted benzhydryl carbenium ions, generated by laser flash photolysis, with halide ions in several solvents. This work provided the nucleophilicity N of chloride and bromide ions in several solvents. These data, along with the ionization rate constants and the solvolysis rate constants for the reactions of substituted benzyhdryl halides, was used to construct quantitative energy surfaces for the. S N 1 reactions of substituted benzhydryl halides in several solvents. [Pg.228]

Head-to-tail dimerization of 1,1-diphenylsilene (19a), produced by laser flash photolysis of 1,1-diphenylsilacyclobutane (17a), yields the 1,3-disilacyclobutane 2761,62 with a rate constant fcdim = (1-3 0.3) x 1010 M 1 s 1 in hexane solution at 25 °C (equation 17)46. This value is within a factor of two of the diffusional rate constant in hexane at this temperature, indicating that dimerization of this silene is faster than reaction with even the most potent of nucleophilic trapping reagents (see Table 3). More recently, the temperature dependence of the rate constant for dimerization of 19a has been studied63. The results of these experiments are shown in Figure 1, and lead to Arrhenius activation parameters of a = -4 2 Id moD1 and log(A/M 1 s"1) = 9.2 0.4. [Pg.961]

The generally observed identity of the r value for solvolysis reactivity and gas-phase stability AAG(c+> of the corresponding carbocation leads to an important prediction concerning the solvolysis transition state. In a typical (limiting) two-step SnI mechanism with a single dominant transition state, the r values of transition states for the various nucleophile-cation reactions should be essentially controlled by the intrinsic resonance demand of the intermediate cation the substituent effect should be described by a single scale of substituent constants (a) with an r value characteristic of this cation. In a recent laser flash-photolysis study (Das, 1993) on the recombination of stable trityl and benzhydryl cations with nucleophiles and solvents, McClelland et al. (1986, 1989) have treated the substituent effects on solvent-recombination processes by (2). [Pg.366]

When the carbocations are generated by Laser flash photolysis, the ion pair collapse with the nucleophilic counterion Cl- is so fast [136] that the decay cannot be followed with the instrumentation used for these experiments, i.e., only those carbocations which manage to escape from the [Aryl2CH + Cl ] ion pair can be observed. Consequently, all rate constants determined for the Laser photolytically produced carbocations refer to the reactions of the nonpaired entities. [Pg.87]

In many synthetically useful radical chain reactions, hydrogen donors are used to trap adduct radicals. Absolute rate constants for the reaction of the resulting hydrogen donor radicals with alkenes have been measured by laser flash photolysis techniques and time-resolved optical absorption spectroscopy for detection of reactant and adduct radicals Addition rates to acrylonitrile and 1,3-pentadienes differ by no more than one order of magnitude, the difference being most sizable for the most nucleophilic radical (Table 8). The reaction is much slower, however, if substituents are present at the terminal diene carbon atoms. This is a general phenomenon known from addition reactions to alkenes, with rate reductions of ca lOO observed at ambient temperature for the introduction of methyl groups at the attacked alkene carbon atom . This steric retardation of the addition process either completely inhibits the chain reaction or leads to the formation of rmwanted products. [Pg.625]

Workentin et al. have recently reported the results of an extensive laser flash photolysis investigation of the reactions of the cation radicals of 9-phenyl- and 9,10-diphenylanthracene (PA and DPA, respectively) with amines. Primary amines react with both cation radicals via nucleophilic addition with rate constants which reflect both the amine basicity and a steric requirement for bond formation. Steric effects are more pronounced for addition of DPA " vs. PA ", presumably due to the presence of substituents at both the 9- and 10-position. Tertiary amines and anilines react with PA " and DPA " via electron transfer with rate constants which correlate with amine ionization potentials. Rate constants for nucleophilic addition of primary amines are faster in acetonitrile than in acetonitrile/water solution. The rate-retarding effect of water is attributed to an equilibrium between the fiee amine (reactive) and hydrated amine (unreactive). The beneficial effect of water on preparative ET-sen itized photoamination may reflect its role as a catalyst for the proton transfer processes which follow C-N bond formation (Scheme 2). Hydration of the amine also should render it less reactive in primary and secondary electron transfer processes which can compete with the formation of the arene cation radical. [Pg.15]

A number of alkene radical cations have been generated in matrices at low temperature and have also been studied by ESR, CIDNP, and electrochemical methods. However, until recently very little absolute kinetic data have been available for the reactions of these important reactive intermediates in solution under conditions comparable to those used in mechanistic or synthetic studies. In a few cases, competitive kinetic techniques have been used to estimate rates for nucleophilic additions or radical cation/alkene cycloaddition reactions. In addition, pulse radiolysis has been used to provide rate constants for some of the radical cation chemistry relevant to the pho-topolymerization of styrenes. More recently, wc and others have used laser flash photolysis to generate and characterize a variety of alkene radical cations. This method has been extensively applied to the study of other reactive intermediates such as radicals, carbenes, and carbenium ions and is particularly well-suited for kinetic measurements of species that have lifetimes in the tens of nanoseconds range and up and that have at least moderate extinction coeffleients in the UV-visible region. [Pg.42]

This review summarizes the generation and spectroscopic characterization of alkene radical cations and kinetic and mechanistic studies of their reactions with nucleophiles and cycloaddition chemistry. Most of the data have been obtained using laser flash photolysis techniques, but comparisons with kinetic data obtained using other methods and with steady-state experiments are presented where appropriate. To date most kinetic measurements using laser Hash photolysis techniques have focused on arylalkene radical cations since these are relatively easy to generate and have spectroscopic and kinetic behavior that is commensurate with nanosecond laser flash photolysis techniques. [Pg.43]

The reaction of a series of substituted styrene radical cations with anions has recently been studied in detail by laser flash photolysis. Representative kinetic data are summarized in Tables 3 and 4 and demonstrate that most of the anions studied react with styrene radical cations with diffusion controlled rate constants. These reactions can involve either addition to the p-carbon to give a benzyl radical (Eq, 15) as discussed above or electron transfer to regenerate the precursor alkene plus the oxidized nucleophile (NU , Eq. 16). Transient absorption spectra have been used to distinguish between these two possibilities. For example, reaction of the radical cation with either bromide or chloride leads to the formation of a transient that is identified... [Pg.59]

Greater time resolution can be gained by coupling pulse electrolysis to stopped-flow apparatus [44]. This technique has been used in the study of anthracene radical cation reactions with nucleophiles described later [45]. Electrochemical techniques are considered rather slow for studying these reactions the radical cations are much more conveniently generated and studied by laser flash photolysis. [Pg.496]

In polar solvents, a-halomethyl aromatics give rise to photochemical reactions that can be explained by both radical and ionic mechanisms. Equation 12.77 shows the results for irradiation of 1-chloromethylnaphtha-lene (119) in methanol. The most direct pathway for formation of the methyl ether 120 is heterolytic dissociation of the C-Cl bond to give a chloride ion and a 1-naphthylmethyl carbocation, the latter then undergoing nucleophilic addition by the solvent. Indeed, naphthylphenylmethyl carbocations were detected spectroscopically following laser flash photolysis of (naphthylphenylmethyl)triphenylphosphonium chlorides. On the other hand, products 121, 122, and 123 appear to be formed via the 1-naphthylmethyl radical. Therefore, an alternative source of the carbocation leading to 120 could be electron transfer from the 1-naphthylmethyl radical instead of direct photochemical heterolysis of 119.215-216 jaj-g g p. [Pg.849]

The methods that generate quinone methides were reviewed, along with a detailed analysis of the mechanisms of the reactions of these electrophiles with nucleophiles. " Quinone methide (10), the para isomer and the zwitterionic meta isomer, were obtained by photolysis of 2-phenylphenol derivatives substituted with a hydroxyadamantane. The mechanisms of decomposition of these intermediates were studied by a combination of product analysis and laser flash photolysis. Irradiation of 1-hydroxypyrene results in intramolecular proton transfer from OH to carbon atoms at the 3, 6, and 8 positions resulting in quinone methide intermediates (e.g. the zwitterion (11)). These revert to starting material by proton loss, a process that is monitored by deuterium labelling. [Pg.288]


See other pages where Laser flash photolysis nucleophile reactions is mentioned: [Pg.625]    [Pg.185]    [Pg.431]    [Pg.431]    [Pg.169]    [Pg.206]    [Pg.207]    [Pg.213]    [Pg.191]    [Pg.59]    [Pg.901]    [Pg.76]    [Pg.170]    [Pg.89]    [Pg.893]    [Pg.1315]    [Pg.1591]    [Pg.300]    [Pg.75]    [Pg.93]    [Pg.139]    [Pg.139]    [Pg.471]    [Pg.269]    [Pg.13]    [Pg.553]    [Pg.315]    [Pg.26]    [Pg.161]    [Pg.1919]    [Pg.466]   
See also in sourсe #XX -- [ Pg.526 ]

See also in sourсe #XX -- [ Pg.526 ]




SEARCH



Flash photolysis

Laser flash photolysis

Laser reactions

© 2024 chempedia.info