Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser-excited flame atomic fluorescence spectrometry

Laser Fluorescence Noise Sources. Finally, let us examine a technique with very complex noise characteristics, laser excited flame atomic fluorescence spectrometry (LEAFS). In this technique, not only are we dealing with a radiation source as well as an atomic vapor cell, as In atomic absorption, but the source Is pulsed with pulse widths of nanoseconds to microseconds, so that we must deal with very large Incident source photon fluxes which may result in optical saturation, and very small average signals from the atomic vapor cell at the detection limit [22]. Detection schemes involve gated amplifiers, which are synchronized to the laser pulse incident on the flame and which average the analyte fluorescence pulses [23]. [Pg.121]

Atomic Fluorescence Spectrometry. A spectroscopic technique related to some of the types mentioned above is atomic fluorescence spectrometry (AFS). Like atomic absorption spectrometry (AAS), AFS requires a light source separate from that of the heated flame cell. This can be provided, as in AAS, by individual (or multielement lamps), or by a continuum source such as xenon arc or by suitable lasers or combination of lasers and dyes. The laser is still pretty much in its infancy but it is likely that future development will cause the laser, and consequently the many spectroscopic instruments to which it can be adapted to, to become increasingly popular. Complete freedom of wavelength selection still remains a problem. Unlike AAS the light source in AFS is not in direct line with the optical path, and therefore, the radiation emitted is a result of excitation by the lamp or laser source. [Pg.376]

Whatever the analytical method and the determinand may be, the greatest care should be devoted to the proper selection and use of internal standards, careful preparation of blanks and adequate calibration to avoid serious mistakes. Today the Antarctic investigator has access to a multitude of analytical techniques, the scope, detection power and robustness of which were simply unthinkable only two decades ago. For chemical elements they encompass Atomic Absorption Spectrometry (AAS) [with Flame (F) and Electrothermal Atomization (ETA) and Hydride or Cold Vapor (HG or CV) generation]. Atomic Emission Spectrometry (AES) [with Inductively Coupled Plasma (ICP), Spark (S), Flame (F) and Glow Discharge/Hollow Cathode (HC/GD) emission sources], Atomic Fluorescence Spectrometry (AFS) [with HC/GD, Electrodeless Discharge (ED) and Laser Excitation (LE) sources and with the possibility of resorting to the important Isotope... [Pg.13]

The application of microtron photon activation analysis with radiochemical separation in environmental and biological samples was described by Randa et al. (2001), and both flame and plasma emission spectroscopic methods are also widely used. A more recently developed technique is that of laser-excited atomic fluorescence spectrometry (LEAFS) (Cheam et al. 1998). [Pg.1100]

The excitation source can be a continuum or a line-like radiation source. Research on atomic fluorescence spectrometry has been connected with the examination of intense radiation sources such as electrodeless discharge lamps and lasers. Various flames, plasmas, and furnaces have been employed as atomizing devices. [Pg.207]

Butcher DJ, Dougherty JP, Preli FR, et al. (1988) Laser excited atomic fluorescence spectrometry in flames, plasmas and electrothermal atomizers. Journal of Analytical Spectrometry 3 1059-1078. [Pg.238]

In atomic fluorescence spectrometry (AFS), the analyte is introduced into an atomizer (flame, plasma, glow discharge, furnace) and excited by monochromatic radiation emitted by a primary source. The latter can be a continuous source (xenon lamp) or a line source (hollow cathode lamp, electrodeless discharge lamp, or tuned laser). Subsequently, the fluorescence radiation, which may be of the same wavelength (resonance fluorescence) or of longer wavelength (nonresonance fluorescence), is measured. [Pg.713]

Fluorescence excitation and emission spectra of the two sodium D lines in an air-acetylene flame, (a) In the excitation spectrum, the laser was scanned, (to) In the emission spectrum, the monochromator was scanned. The monochromator slit width was the same for both spectra. [From s. J. Weeks, H. Haraguchl, and J. D. Wlnefordner, Improvement of Detection Limits in Laser-Excited Atomic Fluorescence Flame Spectrometry," Anal. Chem. 1976t 50,360.]... [Pg.472]

F9. Fraser, L. M., and Winefordner, J. D., Laser-excited atomic fluorescence flame spectrometry. Anal. Chem. 43, 1693-1696 (1971). [Pg.369]


See other pages where Laser-excited flame atomic fluorescence spectrometry is mentioned: [Pg.141]    [Pg.290]    [Pg.290]    [Pg.30]    [Pg.332]    [Pg.340]    [Pg.765]    [Pg.640]   


SEARCH



Atomic fluorescence flame spectrometry

Atomic fluorescence spectrometry atomizers

Atomic spectrometry flames

Atoms excitation

Excitation flame laser

Excitation flames

Excited fluorescence

Flame atomization Flames

Flame atomizers

Flame laser

Flames atoms

Fluorescence laser-excited

Fluorescence spectrometry

Laser atomic fluorescence

Laser atomic spectrometry

Laser excitation

Laser excitation fluorescence

Laser fluorescence

Laser fluorescence flames

Laser spectrometry

Laser-excited atomic fluorescence

Laser-excited atomic fluorescence spectrometry

Laser-excited flame atomic fluorescence

© 2024 chempedia.info