Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactone chirality

It is also possible to prepare chiral lactones through these metallated oxazolines. Lactone chirality is, of course, dependent on the order of introduction of the electrophilic groups, as displayed in Scheme 92. [Pg.451]

When unsaturated ketoesters 17 or 19 are used as substrates, the copper-catalysed addition of MesAl in the presence of L17 provides, after subsequent lactonization, chiral furanones 18 and 20, respectively, bearing quaternary stereogenic centres (Schemes 35 and 36) [68], The optimised reaction conditions are applicable to a wide variety of benzyl ketoesters, and all products can be... [Pg.66]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Stereoselective All lations. Ben2ene is stereoselectively alkylated with chiral 4-valerolactone in the presence of aluminum chloride with 50% net inversion of configuration (32). The stereoselectivity is explained by the coordination of the Lewis acid with the carbonyl oxygen of the lactone, resulting in the typ displacement at the C—O bond. Partial racemi2ation of the substrate (incomplete inversion of configuration) results by internal... [Pg.553]

Double Fiiedel-Ciafts alkylation of configuiationally pure pyiocene (a substituted lactone) with aiomatics results in the formation of cycloalkylation product with retention of configuration at the chiral center (63). [Pg.556]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

Ketene can also be added to trihalosubstituted aldehydes or ketones (12) to form 4-trihalomethyloxetanones. If this addition is performed in the presence of optically active bases such as quinine [130-95-0] chiral lactones are obtained (41,42). [Pg.477]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

Chiral Lactones and Polyesters. Similar to intermolecular reactions described previously. Upases also catalyze intramolecular acylations of hydroxy acids the reactionsults in the formation of lactones. [Pg.341]

Chiral Alcohols and Lactones. HLAT) has been widely used for stereoselective oxidations of a variety of prochiral diols to lactones on a preparative scale. In most cases pro-(3) hydroxyl is oxidized irrespective of the substituents. The method is apphcable among others to tit-1,2-bis(hydroxymethyl) derivatives of cyclopropane, cyclobutane, cyclohexane, and cyclohexene. Resulting y-lactones are isolated in 68—90% yields and of 100% (164,165). [Pg.347]

The pentacyclic plant alkaloid camptothecin has been a popular synthetic target because of its antitumor activity. Retrosynthetic disconnection to tricyclic intermediate A and chiral lactone B followed from multistrategic planning. [Pg.143]

Variations and Improvements on Alkylations of Chiral OxazoUnes Metalated chiral oxazolines can be trapped with a variety of different electrophiles including alkyl halides, aldehydes,and epoxides to afford useful products. For example, treatment of oxazoline 20 with -BuLi followed by addition of ethylene oxide and chlorotrimethylsilane yields silyl ether 21. A second metalation/alkylation followed by acidic hydrolysis provides chiral lactone 22 in 54% yield and 86% ee. A similar... [Pg.240]

Atroposelective cleavage of configurationally unstable lactone cycle in biaryl derivatives as effective route to chiral natural products and useful reagents 99S525. [Pg.211]

The reaction between the chiral furanones (/ )-/3-angelica lactone 129 (Z = H) and 5-hydroxymethyl-2(5//)-furanone 143 (Z = OH) with cyclopentadiene was... [Pg.143]


See other pages where Lactone chirality is mentioned: [Pg.505]    [Pg.135]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.505]    [Pg.135]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.210]    [Pg.322]    [Pg.327]    [Pg.295]    [Pg.60]    [Pg.189]    [Pg.244]    [Pg.159]    [Pg.29]    [Pg.31]    [Pg.62]    [Pg.156]    [Pg.695]    [Pg.91]    [Pg.154]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



6-Lactones chiral

Chiral lactone

© 2024 chempedia.info