Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics The reaction rate constant

Even complex chemical reaction mechanisms can be separated into several definite elementary reactions, i. e. the direct electronic interaction process between molecules and/or atoms when colliding. To understand the total process B-fot example the oxidation of sulfur dioxide to sulfate - it is often adequate to model and budget calculations in the climate system to describe the overall reaction, sometimes called the gross reaction, independent of whether the process A Bis going via a reaction chain A C D E. .. Z B. The complexity of mechanisms (and thereby the rate law) is significantly increased when parallel reactions occur A X beside A- C,E- X beside E F. Many air chemical processes are complex. If only one reactant (sometime called an educt) is involved in the reaction, we call it a unimolecular reaction, that is the reaction rate is proportional to the concentration of only one substance (first-order reaction). Examples are all radioactive decays, rare thermal decays (almost autocatalytic) such as PAN decomposition and all photolysis reactions, which are very important in air. The most frequent are [Pg.372]

The following rate law is valid (remember that the brackets denote the concentration of the substance A etc. and k reactions rate constant  [Pg.373]

An important quantity to describe the state of the chemical reaction (4.102) is the reaction quotient Q. In contrast to Eq. (4.87), the concentrations are not expressed as an equilibrium (when the reaction reaches an equilibrium the condition Q = K [Pg.373]

To solve the differential equation (4.103) analytically, we substitute time-dependent concentrations by ([A ]o - x) and ([.fi]o - x) where subscript 0 denotes the initial concentration for r = 0 and x expresses the concentration of any of the products (assuming that neither C nor D are included in other reactions). [Pg.373]

Often in nature there are situations where the concentration of the second reactant B can be considered constant in the given period or its relatively timely change A[5] / [5] can be neglected. This we assume most when the concentration of B is larger than that of A and thereby the numerical error stays small this is the case in many reactions when O2 is the partner. Another case is the steady state of B d[B]ldt = 0). Then, the concentration of B can be included in the rate constant and the redaction type is reduced to a pseudo-first-order reaction with mathematical simplifications in further treatment  [Pg.374]


Assuming zero order kinetics, the reaction rate constants can be calculated from the slope of the hydrogen uptake curve. Table 1 shows that the first three catalysts have similar rate constants on catalyst weight basis, from 5.6xl0"3 to... [Pg.113]

The last column is plotted versus time using semilogarithmic coordinates in Figure 3.7. The fact that the data fits a straight line is indicative of first-order kinetics. The reaction rate constant may be determined from the slope of this plot. [Pg.53]

The Charge Transfer Rate Constant. It is interesting at this point, however, to consider how the dynamics of p(z, t) is related to the usual measure of kinetics, the reaction rate constant. The key quantity to consider is the survival population S(t),... [Pg.53]

Summary. For the low activation energy kinetics, the reaction rate constants are relatively insensitive to temperature. Thus, the composition profile plays a more important role than the temperature profile. Feed tray locations are useful handles for composition redistribution... [Pg.535]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

The one-electron reduction of thiazole in aqueous solution has been studied by the technique of pulse radiolysis and kinetic absorption spectrophotometry (514). The acetone ketyl radical (CH ljCOH and the solvated electron e were used as one-electron reducing agents. The reaction rate constant of with thiazole determined at pH 8.0 is fe = 2.1 X 10 mole sec in agreement with 2.5 x 10 mole sec" , the value given by the National Bureau of Standards (513). It is considerably higher than that for thiophene (6.5 x 10" mole" sec" ) (513) and pyrrole (6.0 X10 mole sec ) (513). The reaction rate constant of acetone ketyl radical with thiazolium ion determined at pH 0.8 is lc = 6.2=10 mole sec" . Relatively strong transient absorption spectra are observed from these one-electron reactions they show (nm) and e... [Pg.135]

The assumptions of transition state theory allow for the derivation of a kinetic rate constant from equilibrium properties of the system. That seems almost too good to be true. In fact, it sometimes is [8,18-21]. Violations of the assumptions of TST do occur. In those cases, a more detailed description of the system dynamics is necessary for the accurate estimate of the kinetic rate constant. Keck [22] first demonstrated how molecular dynamics could be combined with transition state theory to evaluate the reaction rate constant (see also Ref. 17). In this section, an attempt is made to explain the essence of these dynamic corrections to TST. [Pg.204]

In Fig. 28, the abscissa kt is the product of the reaction rate constant and the reactor residence time, which is proportional to the reciprocal of the space velocity. The parameter k co is the product of the CO inhibition parameter and inlet concentration. Since k is approximately 5 at 600°F these three curves represent c = 1, 2, and 4%. The conversion for a first-order kinetics is independent of the inlet concentration, but the conversion for the kinetics of Eq. (48) is highly dependent on inlet concentration. As the space velocity increases, kt decreases in a reciprocal manner and the conversion for a first-order reaction gradually declines. For the kinetics of Eq. (48), the conversion is 100% at low space velocities, and does not vary as the space velocity is increased until a threshold is reached with precipitous conversion decline. The conversion for the same kinetics in a stirred tank reactor is shown in Fig. 29. For the kinetics of Eq. (48), multiple solutions may be encountered when the inlet concentration is sufficiently high. Given two reactors of the same volume, and given the same kinetics and inlet concentrations, the conversions are compared in Fig. 30. The piston flow reactor has an advantage over the stirred tank... [Pg.119]

The concentration of the lactam in the final product is determined by (3.11). Cyclic dimers can also form, and these also take part in the polymerization12 the reactions are acid catalyzed. The kinetics of this ring-opening polymerization with the three reactions in (3.10)—(3.12) is complex. The reaction rate constants and equilibrium constants have been described by several authors,5 6,8,12 28 and more pragmatic approaches for describing the reaction kinetics have also been given.28,31,33... [Pg.153]

Absorption rates of carbon dioxide were measured in organic solutions of glycidyl methacrylate at 101.3 kPa to obtain the reaction kinetics between carbon dioxide and glycidyl methacrylate using tricaprylylmethylammonium chloride(Aliquat 336) as catalysts. The reaction rate constants were estimated by the mass transfer mechanism accompanied by the pseudo-first-order fast reaction. An empirical correlation between the reaction rate constants and the solubility parameters of solvents, such as toluene, A-methyl-2-pirrolidinone, and dimethyl sulfoxide was presented. [Pg.345]

The deuterium kinetic isotope effect between BH3-THF and BD3-THF was obtained by measuring the reaction rate constants of the two reactions with the unsaturated sulfoxide (Sj-40 independently via React-IR. The k(BH3)/k(BD3) is 1.4, consistent with hydrogen transfer not being the rate-limiting step [15, 16]. [Pg.159]

Note in Table 5.10 that many of the integrals are common to different kinetic models. This is specific to this reaction where all the stoichiometric coefficients are unity and the initial reaction mixture was equimolar. In other words, the change in the number of moles is the same for all components. Rather than determine the integrals analytically, they could have been determined numerically. Analytical integrals are simply more convenient if they can be obtained, especially if the model is to be fitted in a spreadsheet, rather than purpose-written software. The least squares fit varies the reaction rate constants to minimize the objective function ... [Pg.89]

The RHSE has the same limitation as the rotating disk that it cannot be used to study very fast electrochemical reactions. Since the evaluation of kinetic data with a RHSE requires a potential sweep to gradually change the reaction rate from the state of charge-transfer control to the state of mass transport control, the reaction rate constant thus determined can never exceed the rate of mass transfer to the electrode surface. An upper limit can be estimated by using Eq. (44). If one uses a typical Schmidt number of Sc 1000, a diffusivity D 10 5 cm/s, a nominal hemisphere radius a 0.3 cm, and a practically achievable rotational speed of 10000 rpm (Re 104), the mass transfer coefficient in laminar flow may be estimated to be ... [Pg.201]

A reaction rate constant can be calculated from the integrated form of a kinetic expression if one has data on the state of the system at two or more different times. This statement assumes that sufficient measurements have been made to establish the functional form of the reaction rate expression. Once the equation for the reaction rate constant has been determined, standard techniques for error analysis may be used to evaluate the expected error in the reaction rate constant. [Pg.63]

Although the concepts of specific acid and specific base catalysis were useful in the analysis of some early kinetic data, it soon became apparent that any species that could effect a proton transfer with the substrate could exert a catalytic influence on the reaction rate. Consequently, it became desirable to employ the more general Br0nsted-Lowry definition of acids and bases and to write the reaction rate constant as... [Pg.221]

Schultz and Linden Ind. Eng. Chem. Process Design and Development, 1 (111), 1962] have studied the hydrogenolysis of low molecular weight paraffins in a tubular flow reactor. The kinetics of the propane reaction may be assumed to be first-order in propane in the regime of interest. From the data below determine the reaction rate constants at the indicated temperatures and the activation energy of the reaction. [Pg.308]

Linear response theory10 provides a link between the phenomenological description of the kinetics in term of reaction rate constants and the microscopic dynamics of the system [33]. All information needed to calculate the reaction rate constants is contained in the time correlation function... [Pg.271]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

The relationship between CL intensity and time is expressed by a kinetic equation including the reaction rate constants and the substrate concentration. Such is the case with the specific equation for the CL of the luminol reaction, which is one of the most widely studied in this context ... [Pg.178]

Although we cannot clearly determine the reaction order from Figure 3.9, we can gain some insight from a residual plot, which depicts the difference between the predicted and experimental values of cA using the rate constants calculated from the regression analysis. Figure 3.10 shows a random distribution of residuals for a second-order reaction, but a nonrandom distribution of residuals for a first-order reaction (consistent overprediction of concentration for the first five datapoints). Consequently, based upon this analysis, it is apparent that the reaction is second-order rather than first-order, and the reaction rate constant is 0.050. Furthermore, the sum of squared residuals is much smaller for second-order kinetics than for first-order kinetics (1.28 X 10-4 versus 5.39 xl0 4). [Pg.59]

The data in Fig. 7 demonstrate that in the presence of 15 micron solid particles, there is a slight or moderate impact on destruction kinetics. The destruction rate constant of trichloroacetonitrile (TCA) decreases by approximately 10% when the silica particle concentration is increased from 0 to 100 g L 1. In the presence of 10 nm silica (Fig. 8), the trends are similar, with slight to moderate decreases in the reaction rate constant as the silica particle concentration increases. [Pg.9]

The process was controlled by determination of active hydrogen in Si-H groups for several times [2, 6], The influence of the structure of dihydride monomers on the reaction rate, yield and properties of obtained polymers has been studied (table 1, figure 1). Based on kinetic curves (figure 1) of Si-H groups conversion, the reaction rate constants have been determined (table 1). The total reaction order equals to 2. [Pg.70]

The units for the reaction rate constant k when the reaction is of order n (different from the n power of T) will be [(cone)"-1 (time)]-1. Thus, for a first-order reaction the units of k are in reciprocal seconds (s-1), and for a second-order reaction process the units are in cubic centimeter per mol per second (cm3 mol-1 s-1). Thus, as shown in Appendix C, the most commonly used units for kinetic rates are cm3molkJ, where kilojoules are used for the activation energy. [Pg.51]

A continuous flow stirred reactor operates off the decomposition of gaseous ethylene oxide fuel. If the fuel injection temperature is 300 K, the volume of the reactor is 1500 cm3, and the operating pressure is 20 atm, calculate the maximum rate of heat evolution possible in the reactor. Assume that the ethylene oxide follows homogeneous first-order reaction kinetics and that values of the reaction rate constant k are... [Pg.255]

For this situation an irreversible chemical reaction with first-order kinetics with respect to A and B has been used, where a very high value of the reaction rate constant has been taken to simulate an instantaneous... [Pg.6]

A closer examination of the results obtained for run 12 from Table 2 (K g = 2 x 10 m/s) revealed that an increasing reaction rate constant produced a decreasing dimensionless mass flux n. This surprising effect has been studied in more detail by calculating as a function of the reaction rate constant where K tg has been taken equal to lx 10" m/s in order to enlarge the computed effects. The results of the calculations are shown in Fig. 8. In this figure three lines are shown which correspond to the following reaction kinetics ... [Pg.11]

The reaction rate constant and the diffusivity may depend weakly on pressure (see previous section). Because the temperature dependence is much more pronounced and temperature and pressure often co-vary, the temperature effect usually overwhelms the pressure effect. Therefore, there are various cooling rate indicators, but few direct decompression rate indicators have been developed based on geochemical kinetics. Rutherford and Hill (1993) developed a method to estimate the decompression (ascent) rate based on the width of the break-dovm rim of amphibole phenocryst due to dehydration. Indirectly, decompres-... [Pg.70]

Figure 2-5 Experimental data showing how Fe concentration in the Ml site approaches equilibrium value from both above and below the equilibrium concentration. Figures like this are used in both equilibrium studies (to show that equilibrium is indeed reached since the same final state is reached from opposite directions, which is called a pair of reversals) and kinetic studies (to infer the reaction rate constants). From Wang et al. (2005). Figure 2-5 Experimental data showing how Fe concentration in the Ml site approaches equilibrium value from both above and below the equilibrium concentration. Figures like this are used in both equilibrium studies (to show that equilibrium is indeed reached since the same final state is reached from opposite directions, which is called a pair of reversals) and kinetic studies (to infer the reaction rate constants). From Wang et al. (2005).

See other pages where Kinetics The reaction rate constant is mentioned: [Pg.372]    [Pg.303]    [Pg.144]    [Pg.372]    [Pg.303]    [Pg.144]    [Pg.2947]    [Pg.38]    [Pg.375]    [Pg.205]    [Pg.21]    [Pg.219]    [Pg.260]    [Pg.158]    [Pg.308]    [Pg.201]    [Pg.257]    [Pg.446]    [Pg.475]    [Pg.161]    [Pg.11]    [Pg.119]    [Pg.119]    [Pg.119]   


SEARCH



Kinetic constants

Kinetic constants constant

Kinetic rate constant

Kinetic rates

Kinetics constant

Kinetics reaction rates

Rate Kinetics

Rate constant kinetics

Rate constants Reaction kinetics

Reaction rate constant

The Reaction Rate Constant

The reaction rate

© 2024 chempedia.info