Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics physico-chemical

M. L. Davis, V. V. Vesselovsky, and H. L. Johnston, Kinetics, Thermodynamics, Physico-Chemical Properties and Manufacture ofHydra ne, Ohio State University, Wright-Patterson Air Eorce Base, Dayton, Ohio, Mar. 15, 1952. [Pg.292]

The chemical modification of PS with epichlorohydrin (EC), maleic anhydride (MA), acetic anhydride (AA), butadiene, and isoprene in the presence of cationic catalysis such as AICI3, FeCU, BF3 0(C2H5)2, ZnCb, TiCL, and SnCU, have been extensively studied under various conditions for the last 15 years. We have also studied their kinetics, physico-mechanical, thermal, and dielec-... [Pg.263]

Tunitsky NN, Kaminsky VA, Timashev SF (1972) Methods of Physico-Chemical Kinetics (in Russian) Khimiya, Moscow... [Pg.49]

In this work, the MeOH kinetic model of Lee et al. [9] is adopted for the micro-channel fluid dynamics analysis. Pressure and concentration distributions are investigated and represented to provide the physico-chemical insight on the transport phenomena in the microscale flow chamber. The mass, momentum, and species equations were employed with kinetic equations that describe the chemical reaction characteristics to solve flow-field, methanol conversion rate, and species concentration variations along the micro-reformer channel. [Pg.645]

For processes under development, the most cost-effective means of avoiding potential risk is to eliminate those materials that are inherently unsafe that is, those materials whose physical or physico-chemical properties lead to them being highly reactive or unstable. This is somewhat difficult to achieve for several reasons. First, without a full battery of tests to determine, for example, flammability, upper/lower explosivity limits and their variation with scale, minimum ignition temperatures, and so on, it is almost impossible to tell how a particular chemical will behave in a given process. Second, chemical instability may make a compound attractive to use because its inherent reactivity ensures a reaction proceeds to completion at a rapid enough rate to be useful that is, the reaction is kinetically and thermodynamically favoured. [Pg.243]

Besides these chemical effects, which are understood in terms of the established theories in semiconductor physics and chemical kinetics, new physico-chemical phenomena are observed in the case of extremely small particles. The metal or semiconductor behavior is gradually lost with decreasing size, the consequences being drastic changes in the optical properties of the materials and also in their photocatalytic effects. [Pg.114]

Various models of SFE have been published, which aim at understanding the kinetics of the processes. For many dynamic extractions of compounds from solid matrices, e.g. for additives in polymers, the analytes are present in small amounts in the matrix and during extraction their concentration in the SCF is well below the solubility limit. The rate of extraction is then not determined principally by solubility, but by the rate of mass transfer out of the matrix. Supercritical gas extraction usually falls very clearly into the class of purely diffusional operations. Gere et al. [285] have reported the physico-chemical principles that are the foundation of theory and practice of SCF analytical techniques. The authors stress in particular the use of intrinsic solubility parameters (such as the Hildebrand solubility parameter 5), in relation to the solubility of analytes in SCFs and optimisation of SFE conditions. [Pg.85]

The reaction pathway for the gas-phase methylation of m-cresol, as inferred from catalytic data here reported, can be summarized as shown in Scheme 1. Methanol and m-cresol react through two parallel reactions, yielding either 3-MA or DMPs. The relative contribution of the two reactions is a function of the physico-chemical features of the catalysts, and of the reaction temperature as well, C-methylation being kinetically favored at high temperature. Consecutive reactions occur on 3-MA, which acts as a methylating agent yielding DMPs, DMAs and polyalkylates (with co-production of m-cresol in all cases) by reaction with m-cresol, 3-MA and DMPs, respectively. Consecutive reactions may also occur on DMPs to yield polyalkylates. [Pg.351]

The temperature reached by a monomer undergoing photopolymerization plays a key role on the reaction kinetics, in particular on the ultimate degree of conversion and therefore on the physico-chemical properties of the UV-cured polymer. It is strongly dependent on the formulation reactivity, the film thickness, as well as on the light intensity. [Pg.79]

The processes controlling transfer and/or removal of pollutants at the aqueous-solid phase interface occur as a result of interactions between chemically reactive groups present in the principal pollutant constituents and other chemical, physical and biological interaction sites on solid surfaces [1]. Studies of these processes have been investigated by various groups (e.g., [6-14]). Several workers indicate that the interactions between the organic pollutants/ SWM leachates at the aqueous-solid phase surfaces involve chemical, electrochemical, and physico-chemical forces, and that these can be studied in detail using both chemical reaction kinetics and electrochemical models [15-28]. [Pg.171]

Fig. 1 Complex interplay of physico-chemical and kinetic aspects in aqueous multiphase catalysis... Fig. 1 Complex interplay of physico-chemical and kinetic aspects in aqueous multiphase catalysis...
Physico-chemical properties. In the fifties and sixties, several studies on the conformation of ACTH in solution were carried out. Among the used techniques were ORD, CD, fluorescence depolarization studies and kinetics of deuterium hydrogen exchange (for a review see ref. 2). The results pointed to a highly flexible random coil in solution however, Eisinger (40) found that the distance between Tyr and Trp [in ACTH-(1-24)] as measured by excitation spectroscopy, was in better agreement with some form of loop or helical structure. In addition. Squire and Bewley noted 11-15% helical content, located in the N-terminal 1-11 part of the molecule, when measuring the ORD of ACTH at pH 8.1 (41) (a random coil was found at neutral and acidic pH values, 2). [Pg.160]

The non-linear theory of steady-steady (quasi-steady-state/pseudo-steady-state) kinetics of complex catalytic reactions is developed. It is illustrated in detail by the example of the single-route reversible catalytic reaction. The theoretical framework is based on the concept of the kinetic polynomial which has been proposed by authors in 1980-1990s and recent results of the algebraic theory, i.e. an approach of hypergeometric functions introduced by Gel fand, Kapranov and Zelevinsky (1994) and more developed recently by Sturnfels (2000) and Passare and Tsikh (2004). The concept of ensemble of equilibrium subsystems introduced in our earlier papers (see in detail Lazman and Yablonskii, 1991) was used as a physico-chemical and mathematical tool, which generalizes the well-known concept of equilibrium step . In each equilibrium subsystem, (n—1) steps are considered to be under equilibrium conditions and one step is limiting n is a number of steps of the complex reaction). It was shown that all solutions of these equilibrium subsystems define coefficients of the kinetic polynomial. [Pg.48]

If the ranges of homogeneity of the phases taking part in the transformation are wider than those of line compounds, the kinetic coefficients in Eqns. (12.22) and (12.23), that is v jf, yb, and A b, are certainly not composition independent. It may then be questionable if transport across the boundary (Eqn. (12.22)) and the simultaneous structure change (Eqn. (12.23)) are independent processes as was tacitly assumed by formulating the kinetic relations in Eqns. (12.22) and (12.23). Let us emphasize that the foregoing analysis is meant to clarify the physico-chemical conceptual frame in which first-order transitions which include matter transport should be discussed. Pertinent experiments are still rare. [Pg.307]


See other pages where Kinetics physico-chemical is mentioned: [Pg.67]    [Pg.67]    [Pg.123]    [Pg.817]    [Pg.129]    [Pg.14]    [Pg.843]    [Pg.155]    [Pg.223]    [Pg.1074]    [Pg.1098]    [Pg.465]    [Pg.827]    [Pg.828]    [Pg.143]    [Pg.1076]    [Pg.234]    [Pg.16]    [Pg.166]    [Pg.255]    [Pg.47]    [Pg.52]    [Pg.391]    [Pg.75]    [Pg.76]    [Pg.77]    [Pg.179]    [Pg.200]    [Pg.209]    [Pg.87]    [Pg.100]    [Pg.43]    [Pg.410]    [Pg.87]    [Pg.191]    [Pg.469]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Chemical kinetics

Kinetic Chemicals

Physico-chemical

© 2024 chempedia.info