Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate kinetics

Figure 6.3 Log-log plots of Rp versus concentration which verify the order of the kinetics with respect to the constituent varied, (a) Monomer (methyl methacrylate) concentration varied at constant initiator concentration. [Data from T. Sugimura and Y. Minoura, J. Polym. Sci. A-l 2735 (1966).] (b) Initiator concentration varied AIBN in methy methacrylate (o), benzoyl peroxide in styrene ( ), and benzoyl peroxide in methyl methacrylate ( ). (From P. J. Flory, Principles of Polymer Chemistry, copyright 1953 by Cornell University, used with permission.)... Figure 6.3 Log-log plots of Rp versus concentration which verify the order of the kinetics with respect to the constituent varied, (a) Monomer (methyl methacrylate) concentration varied at constant initiator concentration. [Data from T. Sugimura and Y. Minoura, J. Polym. Sci. A-l 2735 (1966).] (b) Initiator concentration varied AIBN in methy methacrylate (o), benzoyl peroxide in styrene ( ), and benzoyl peroxide in methyl methacrylate ( ). (From P. J. Flory, Principles of Polymer Chemistry, copyright 1953 by Cornell University, used with permission.)...
Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

Additional data were obtained from the study of kinetics of the slow disproportionation of the living dimers of methyl methacrylate. The progress of this reaction is shown in Fig. 8 which displays also the respective rates and equilibrium constants. [Pg.107]

We extended the kinetic model to other monomer systems such as styrene and methyl methacrylate. With these, we used common initiators such as benzoyl peroxide and azo-bis-isobutyronitrile. The results of these simulations compared closely with some published experiments. [Pg.339]

One of the calculation results for the bulk copolyroerization of methyl methacrylate and ethylene glycol dimethacrylate at 70 C is shown in Figure 4. Parameters used for these calculations are shown in Table 1. An empirical correlation of kinetic parameters which accounts for diffusion controlled reactions was estimated from the time-conversion curve which is shown in Figure 5. This kind of correlation is necessary even when one uses statistical methods after Flory and others in order to evaluate the primary chain length drift. [Pg.251]

In this work, a comprehensive kinetic model, suitable for simulation of inilticomponent aiulsion polymerization reactors, is presented A well-mixed, isothermal, batch reactor is considered with illustrative purposes. Typical model outputs are PSD, monomer conversion, multivariate distritution of the i lymer particles in terms of numtoer and type of contained active Chains, and pwlymer ccmposition. Model predictions are compared with experimental data for the ternary system acrylonitrile-styrene-methyl methacrylate. [Pg.380]

Torkelson and coworkers [274,275] have developed kinetic models to describe the formation of gels in free-radical pol5nnerization. They have incorporated diffusion limitations into the kinetic coefficient for radical termination and have compared their simulations to experimental results on methyl methacrylate polymerization. A basic kinetic model with initiation, propagation, and termination steps, including the diffusion hmitations, was found to describe the gelation effect, or time for gel formation, of several samples sets of experimental data. [Pg.559]

In this paper the GPC interpretation underlying the kinetic model of methyl methacrylate polymerization previously publMied and by now shown to be useful is detailed and updated. It provides a prime example of the conventional experimental use of GPC in homopolymerization studio. [Pg.179]

Turner, D. T. (1982). Poly(methyl methacrylate) plus water. Sorption kinetics and volumetric changes. Polymer, 23, 197-202. [Pg.55]

A detailed study of the mechanism of the insertion reaction of monomer between the metal-carbon bond requires quantitative information on the kinetics of the process. For this information to be meaningful, studies should be carried out on a homogeneous system. Whereas olefins and compounds such as Zr(benzyl)4 and Cr(2-Me-allyl)3, etc. are very soluble in hydrocarbon solvents, the polymers formed are crystalline and therefore insoluble below the melting temperature of the polyolefine formed. It is therefore not possible to use olefins for kinetic studies. Two completely homogeneous systems have been identified that can be used to study the polymerization quantitatively. These are the polymerization of styrene by Zr(benzyl)4 in toluene (16, 25) and the polymerization of methyl methacrylate by Cr(allyl)3 and Cr(2-Me-allyl)3 (12)- The latter system is unusual since esters normally react with transition metal allyl compounds (10) but a-methyl esters such as methyl methacrylate do not (p. 270) and the only product of reaction is polymethylmethacrylate. Also it has been shown with both systems that polymerization occurs without a change in the oxidation state of the metal. [Pg.304]

A study of the polymerization kinetics of methyl methacrylate, in the presence of PBN, and of molecular-mass properties of the obtained polymers shows that the systems react by the pseudoliving mechanism (699). In the first stages of the polymerization process, PBN reacts with oligomeric radicals, forming stable nitroxyl radical-spin adducts A-, see Scheme 2.207. [Pg.295]

A critical survey of the literature on free radical polymerizations in the presence of phase transfer agents indicates that the majority of these reactions are initiated by transfer of an active species (monomer or initiator) from one phase to another, although the exact details of this phase transfer may be influenced by the nature of the phase transfer catalyst and reaction medium. Initial kinetic studies of the solution polymerization of methyl methacrylate utilizing solid potassium persulfate and Aliquat 336 yield the experimental rate law ... [Pg.116]

Takeishi, et. al, have described the redox polymerization of methyl methacrylate in the absence of solvent (6). With 18-crown-6 as the phase transfer catalyst and potassium persulfate/sodiurn bisulfite as the redox couple, polymerization was observed at temperatures <50 C whereas little or no polymerization occurred under these conditions in the absence of bisulfite. Above 55 C, however, polymerization occurred even in the absence of bisulfite. From the limited kinetic data reported (6), one can estimate (13) that the rate of polymerization (Rp) is approximately proportional to the square root of crown concentration (Equation 1) ... [Pg.118]

The kinetics of methyl methacrylate (MMA) polymerization in ethyl acetate/water two phase systems was described as being more well-behaved ( ). Using hexadecylpyridinium chloride (HPC) as the phase transfer catalyst, Rp was found to be approximately first order in MMA concentration. In support of a typical phase transfer mechanism, it was found that... [Pg.120]

Staffer et al. [81] have investigated the sonochemical polymerisation of both methyl methacrylate and acrylamide. No polymerisation was observed in the absence of an initiator. However in the presence of initiator and ultrasound, polymerisation conformed to the usual radical kinetics. Orszulik [82] has also been able to show that whilst polymerisation and copolymerisation of acrylic monomers did not occur in the absence of the initiator, in the presence of AZBN as initiator moderately high yields were produced after prolonged sonication (17 h). [Pg.209]

Most addition polymers are formed from polymerizations exhibiting chain-growth kinetics. This includes the typical polymerizations, via free radical or some ionic mode, of the vast majority of vinyl monomers such as vinyl chloride, ethylene, styrene, propylene, methyl methacrylate, and vinyl acetate. By comparison, most condensation polymers are formed from systems exhibiting stepwise kinetics. Industrially this includes the formation of polyesters and polyamides (nylons). Thus, there exists a large overlap between the terms stepwise kinetics and condensation polymers, and chainwise kinetics and addition (or vinyl) polymers. A comparison of the two types of systems is given in Table 4.1. [Pg.87]

One of the early specialized techniques used for the study of radical reactions was the rotating sector method. The use of this technique (Fig. 6) for determining reaction kinetics was demonstrated by Melville for the gas phase polymerization of methyl methacrylate, and later by Bartlett and Swain for the liquid phase reaction, and by Carlsson and Ingold for tin hydride reductions. ... [Pg.25]

Fig. 2. Polymerization reactions in the presence of radical scavenging oxygen. Kinetic constants are approximate values for methyl methacrylate... Fig. 2. Polymerization reactions in the presence of radical scavenging oxygen. Kinetic constants are approximate values for methyl methacrylate...
A review is given on the kinetics of the anionic polymerization of methyl methacrylate and tert.-butyl methacrylate in tetrahydrofuran and 1,2-dimethoxy-ethane, including major results of the author s laboratory. The Arrhenius plots for the propagation reaction+are linear and independent of the counterion (i.e. Na, Cs). The results are discussed assuming the active centre to be a contact ion pair with an enolate-like anion the counterion thus exhibiting little influence on the reactivity of the carbanion. [Pg.441]


See other pages where Methyl methacrylate kinetics is mentioned: [Pg.269]    [Pg.409]    [Pg.411]    [Pg.291]    [Pg.121]    [Pg.126]    [Pg.129]    [Pg.134]    [Pg.180]    [Pg.38]    [Pg.473]    [Pg.27]    [Pg.28]    [Pg.404]    [Pg.322]    [Pg.106]    [Pg.280]    [Pg.233]    [Pg.270]    [Pg.190]    [Pg.79]    [Pg.85]    [Pg.204]    [Pg.74]    [Pg.55]    [Pg.161]    [Pg.35]    [Pg.325]    [Pg.152]    [Pg.190]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Methyl methacrylate

© 2024 chempedia.info