Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics, chemical exchange reaction

This field is surveyed by Philpotts and Schnetzler (1972) who also presented their own data on the range of partitioning for K, Rb, Ba, Sr and many rare earths between rock-forming minerals (phenocrysts) and matrix. The thermodynamics and kinetics of chemical exchange reactions in crystalline rocks were discussed by Kretz (1972). [Pg.167]

Another means is available for studying the exchange kinetics of second-order reactions—we can adjust a reactant concentration. This may permit the study of reactions having very large second-order rate constants. Suppose the rate equation is V = A caCb = kobs A = t Ca, soAtcb = t For the experimental measurement let us say that we wish t to be about 10 s. We can achieve this by adjusting Cb so that the product kc 10 s for example, if A = 10 M s , we require Cb = 10 M. This method is possible, because there is no net reaction in the NMR study of chemical exchange. [Pg.173]

Although the role of rare earth ions on the surface of TiC>2 or close to them is important from the point of electron exchange, still more important is the number of f-electrons present in the valence shell of a particular rare earth. As in case of transition metal doped semiconductor catalysts, which produce n-type WO3 semiconductor [133] or p-type NiO semiconductor [134] catalysts and affect the overall kinetics of the reaction, the rare earth ions with just less than half filled (f5 6) shell produce p-type semiconductor catalysts and with slightly more than half filled electronic configuration (f8 10) would act as n-type of semiconductor catalyst. Since the half filled (f7) state is most stable, ions with f5 6 electrons would accept electrons from the surface of TiC>2 and get reduced and rare earth ions with f8-9 electrons would tend to lose electrons to go to stabler electronic configuration of f7. The tendency of rare earths with f1 3 electrons would be to lose electrons and thus behave as n-type of semiconductor catalyst to attain completely vacant f°- shell state [135]. The valence electrons of rare earths are rather embedded deep into their inner shells (n-2), hence not available easily for chemical reactions, but the cavitational energy of ultrasound activates them to participate in the chemical reactions, therefore some of the unknown oxidation states (as Dy+4) may also be seen [136,137]. [Pg.319]

In a detonation wave the change of state—after equally rapid compression—depends on the process of chemical reaction and is extended in accordance with the kinetics of the reaction. The only restriction is that the wave (reaction zone) not be extended to a length which is many times larger than the tube diameter. Comparison with a shock wave shows only that the role of heat conduction and diffusion of active centers in a detonation wave is negligible. But they are not needed the mixture, which has been heated to a high temperature, enters the reaction and reacts under the influence of active centers created by the thermal motion and multiplying in the course of the reaction. Each layer reacts without exchanging heat or centers with other layers. [Pg.204]

In short, much future research on kinetics of soil chemical processes is needed. Areas worthy of investigation include improved methodologies, increased use of spectroscopic and rapid kinetic techniques to determine mechanisms of reactions on soils and soil constituents, kinetic modeling, kinetics of anion reactions, redox and weathering dynamics, kinetics of ternary exchange phenomena, and rates of organic pollutant reactions in soils and sediments. [Pg.3]

Despite the kinetic lability of the Ln-X-cr-bonds (even the thermodynamically very stable Ln-OR bond is subject to rapid ligand exchange reactions [49]) organolanthanide compounds are thermally very robust over a wide range of temperature (Fig. 5) [114, 116, 139, 144-151]. Thermal stability is not only favorable in catalytic transformations at elevated temperatures [47], for the support of volatile molecular precursors is of fundamental importance in chemical vapor deposition techniques the sublimation behavior is a criterion of thermal stability and suitability for these processes (Fig. 5). [Pg.18]

Duration of a cycle of HHP operation is defined as time required for reaction hydrogenation/dehydrogenation in pair hydride system. This time determines heat capacity of HHP. Duration of a cycle depends on kinetics of hydrogenation reactions, a heat transfer between the heated up and cooling environment, heat conductivities of hydride beds. Rates of reactions are proportional to a difference of dynamic pressure of hydrogen in sorbers of HHP and to constants of chemical reaction of hydrogenation. The relation of dynamic pressure is adjusted by characteristics of a heat emission in beds of metal hydride particles (the heat emission of a hydride bed depends on its effective specific heat conductivity) and connected to total factor of a heat transfer of system a sorber-heat exchanger. The modified constant of speed, as function of temperature in isobaric process [1], can characterize kinetics of sorption reactions. In HHP it is not sense to use hydrides with a low kinetics of reactions. The basic condition of an acceptability of hydride for HHP is a condition of forward rate of chemical reactions in relation to rate of a heat transmission. [Pg.386]

Researchers are capable of obtaining detailed information about many topics of scientific interest. For example, chemical kinetics, electron exchange, electrochemical processes, crystalline structure, fundamental quantum theory, catalysis, and polymerization reactions have all been studied with great success. [Pg.340]

Homogeneous charge transfer can take place between chemically similar redox species of one redox couple, e.g., Fe3+ and Fe2+ ions in solution or ferrice-nium and ferrocene moieties in poly(vinylferrocene) films, the electron transfer (- electron hopping or electron exchange reaction) can be described in terms of second-order kinetics and according to the - Dahms-Ruff theory [viii-x] it may be coupled to the isothermal diffusion ... [Pg.86]

There are many reactions in soil-water systems pertaining to nutrient availability, contaminant release, and nutrient or contaminant transformations. Two processes regulating these reactions are chemical equilibria (Chapter 2) and kinetics. The specific kinetic processes that environmental scientists are concerned with include mineral dissolution, exchange reactions, reductive or oxidative dissolution, reductive or oxidative precipitation, and enzymatic transformation. This chapter provides a quantitative description of reaction kinetics and outlines their importance in soil-water systems. [Pg.272]

It follows then that the thermodynamic approach makes no reference to kinetics, while the kinetic approach is only concerned with the point at which the forward reaction equals the reverse reaction and gives no attention to the time needed to reach this equilibrium point. In nature, certain chemical events may take a few minutes to reach equilibrium, while others may take days to years to reach equilibrium such phenomena are referred to as hystereses phenomena. For example, exchange reactions... [Pg.273]

At the energies required for conformational conversions and other exchange processes which are amenable to study by NMR spectroscopy, the reacting molecules have state densities which are much lower than those of molecules undergoing isomerization and decomposition reactions which are generally found to obey RRKM kinetics. Whether these systems can be modeled with RRKM theory is a question of current interest. Table 8 lists molecules for which pressure-dependent gas-phase chemical exchange rate constants have been obtained. [Pg.136]

In custom-designing materials with tailored properties, it is often necessary to s)m-thesize metastable phases that will be kinetically stable under the temperature and conditions of use. These phases are obtainable only through kinetic (chemical) control. In many cases, kinetic control has been achieved via the soft chemical low-temperature (e.g. electrochemical synthesis, sol-gel method) and/or topochemical routes (e.g. intercalation, ion exchange, dehydration reactions), since these routes use nuld synthetic conditions. It should be noted that not all soft chemical routes are topochemical. A reaction is said to be under topochemical control only if it follows the pathway of minimum atomic or molecular movement (Elizabe et al., 1997). Accordingly, topochemical reactions are those in which the lattice of the solid product shows one or a small number of... [Pg.165]

Stability constants are not always the best predictive tool for measuring the ease and the extent of chemical reactions involving complexes nor their stability with time, because their kinetic behavior can often be even more crucial. For example, when ligand exchange reactions of ML (e.g., [FeEDTA]) with other metal ions (e.g., Zn2+ or Ca2+) are ki-netically slow, they do not significantly influence ligand speciation. Another typical example of the thermodynamics vs kinetics competition is the fact that the degradability of some metal complexes (e.g., metal-NTA) is related to their kinetic lability, rather than to their thermodynamic stability constants. Kinetic rather than thermodynamic data are then used to classify metal complexes as labile, quasi-labile, slowly labile, and inert (or stable). See Section 3.2.6. [Pg.52]


See other pages where Kinetics, chemical exchange reaction is mentioned: [Pg.261]    [Pg.15]    [Pg.210]    [Pg.369]    [Pg.445]    [Pg.64]    [Pg.42]    [Pg.290]    [Pg.73]    [Pg.167]    [Pg.125]    [Pg.462]    [Pg.42]    [Pg.234]    [Pg.276]    [Pg.244]    [Pg.252]    [Pg.93]    [Pg.41]    [Pg.560]    [Pg.86]    [Pg.47]    [Pg.392]    [Pg.212]    [Pg.501]    [Pg.493]    [Pg.19]    [Pg.283]    [Pg.5]    [Pg.213]    [Pg.58]    [Pg.562]    [Pg.796]    [Pg.53]    [Pg.67]    [Pg.61]   
See also in sourсe #XX -- [ Pg.265 , Pg.266 ]




SEARCH



Chemical exchange

Chemical kinetics

Chemical reaction kinetics

Chemical reaction kinetics reactions

Chemical reactions exchange

Exchange kinetics

Kinetic Chemicals

Kinetic exchange

Kinetic exchange reactions

© 2024 chempedia.info