Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic overall kinetics

In the reaction kinetics context, the tenn nonlinearity refers to the dependence of the (overall) reaction rate on the concentrations of the reacting species. Quite generally, the rate of a (simple or complex) reaction can be defined in temis of the rate of change of concentration of a reactant or product species. The variation of this rate with the extent of reaction then gives a rate-extent plot. Examples are shown in figure A3.14.1. In... [Pg.1093]

The simplest manifestation of nonlinear kinetics is the clock reaction—a reaction exliibiting an identifiable mduction period , during which the overall reaction rate (the rate of removal of reactants or production of final products) may be practically indistinguishable from zero, followed by a comparatively sharp reaction event during which reactants are converted more or less directly to the final products. A schematic evolution of the reactant, product and intenuediate species concentrations and of the reaction rate is represented in figure A3.14.2. Two typical mechanisms may operate to produce clock behaviour. [Pg.1096]

The Landolt reaction (iodate + reductant) is prototypical of an autocatalytic clock reaction. During the induction period, the absence of the feedback species (Irere iodide ion, assumed to have virtually zero initial concentration and fomred from the reactant iodate only via very slow initiation steps) causes the reaction mixture to become kinetically frozen . There is reaction, but the intemiediate species evolve on concentration scales many orders of magnitude less than those of the reactant. The induction period depends on the initial concentrations of the major reactants in a maimer predicted by integrating the overall rate cubic autocatalytic rate law, given in section A3.14.1.1. [Pg.1097]

Similarly to the response at hydrodynamic electrodes, linear and cyclic potential sweeps for simple electrode reactions will yield steady-state voltammograms with forward and reverse scans retracing one another, provided the scan rate is slow enough to maintain the steady state [28, 35, 36, 37 and 38]. The limiting current will be detemiined by the slowest step in the overall process, but if the kinetics are fast, then the current will be under diffusion control and hence obey the above equation for a disc. The slope of the wave in the absence of IR drop will, once again, depend on the degree of reversibility of the electrode process. [Pg.1940]

An important point about kinetics of cyclic reactions is tliat if an overall reaction proceeds via a sequence of elementary steps in a cycle (e.g., figure C2.7.2), some of tliese steps may be equilibrium limited so tliat tliey can proceed at most to only minute conversions. Nevertlieless, if a step subsequent to one tliat is so limited is characterized by a large enough rate constant, tlien tire equilibrium-limited step may still be fast enough for tire overall cycle to proceed rapidly. Thus, tire step following an equilibrium-limited step in tire cycle pulls tire cycle along—it drains tire intennediate tliat can fonn in only a low concentration because of an equilibrium limitation and allows tire overall reaction (tire cycle) to proceed rapidly. A good catalyst accelerates tire steps tliat most need a boost. [Pg.2700]

Complex chemical mechanisms are written as sequences of elementary steps satisfying detailed balance where tire forward and reverse reaction rates are equal at equilibrium. The laws of mass action kinetics are applied to each reaction step to write tire overall rate law for tire reaction. The fonn of chemical kinetic rate laws constmcted in tliis manner ensures tliat tire system will relax to a unique equilibrium state which can be characterized using tire laws of tliennodynamics. [Pg.3054]

Ocily n. - 1 of the n equations (4.1) are independent, since both sides vanish on suinming over r, so a further relation between the velocity vectors V is required. It is provided by the overall momentum balance for the mixture, and a well known result of dilute gas kinetic theory shows that this takes the form of the Navier-Stokes equation... [Pg.26]

The overall reactivity of the 4- and 5-positions compared to benzene has been determined by competitive methods, and the results agreed with kinetic constants established by nitration of the same thiazoles in sulfuric acid at very low concentrations (242). In fact, nitration of alkylthiazoles in a mixture of nitric and sulfuric acid at 100°C for 4 hr gives nitro compounds in preparative yield, though some alkylthiazoles are oxidized. Results of competitive nitrations are summarized in Table III-43 (241, 243). For 2-alkylthiazoles, reactivities were too low to be measured accurately. [Pg.381]

Furthermore kinetic studies reveal that electrophilic addition of hydrogen halides to alkynes follows a rate law that is third order overall and second order in hydrogen halide... [Pg.378]

Overall the reaction exhibits second order kinetics Both the ester and the base are involved m the rate determining step or m a rapid step that precedes it... [Pg.853]

All these facts—the observation of second order kinetics nucleophilic attack at the carbonyl group and the involvement of a tetrahedral intermediate—are accommodated by the reaction mechanism shown m Figure 20 5 Like the acid catalyzed mechanism it has two distinct stages namely formation of the tetrahedral intermediate and its subsequent dissociation All the steps are reversible except the last one The equilibrium constant for proton abstraction from the carboxylic acid by hydroxide is so large that step 4 is for all intents and purposes irreversible and this makes the overall reaction irreversible... [Pg.855]

These data are typical of lasers and the sorts of samples examined. The actual numbers are not crucial, but they show how the stated energy in a laser can be interpreted as resultant heating in a solid sample. The resulting calculated temperature reached by the sample is certainly too large because of several factors, such as conductivity in the sample, much less than I00% efficiency in converting absorbed photon energy into kinetic energy of ablation, and much less than 100% efficiency in the actual numbers of photons absorbed by the sample from the beam. If the overall efficiency is 1-2%, the ablation temperature becomes about 4000 K. [Pg.111]

Photoinitiation is not as important as thermal initiation in the overall picture of free-radical chain-growth polymerization. The foregoing discussion reveals, however, that the contrast between the two modes of initiation does provide insight into and confirmation of various aspects of addition polymerization. The most important application of photoinitiated polymerization is in providing a third experimental relationship among the kinetic parameters of the chain mechanism. We shall consider this in the next section. [Pg.371]

Returning to the data of Table 7.1, it is apparent that there is a good deal of variability among the r values displayed by various systems. We have already seen the effect this produces on the overall copolymer composition we shall return to the matter of microstructure in Sec. 7.6. First, however, let us consider the obvious question. What factors in the molecular structure of two monomers govern the kinetics of the different addition steps This question is considered in the few next sections for now we look for a way to systematize the data as the first step toward an answer. [Pg.434]

In order for the primary photoelectron, which is bound to the surface atom with binding energy to be detected ia xps, the electron must have sufficient kinetic energy to overcome, ia addition to E the overall attractive potential of the spectrometer described by its work function, Thus, the measured kinetic energy of this photoelectron, Ej is given by... [Pg.275]

The overall effect, aside from the change in the polymer composition, is a decrease in the rate of monomer reaction, the kinetic chain length, and the polymer molecular weight (83). [Pg.166]

Equilibrium Theory. The general features of the dynamic behavior may be understood without recourse to detailed calculations since the overall pattern of the response is governed by the form of the equiUbrium relationship rather than by kinetics. Kinetic limitations may modify the form of the concentration profile but they do not change the general pattern. To illustrate the different types of transition, consider the simplest case an isothermal system with plug flow involving a single adsorbable species present at low concentration in an inert carrier, for which equation 30 reduces to... [Pg.261]

The overall extraction process is sometimes subdivided into two general categories according to the main mechanisms responsible for the dissolution stage (/) those operations that occur because of the solubiHty of the solute in or its miscibility with the solvent, eg, oilseed extraction, and (2) extractions where the solvent must react with a constituent of the soHd material in order to produce a compound soluble in the solvent, eg, the extraction of metals from metalliferous ores. In the former case the rate of extraction is most likely to be controUed by diffusion phenomena, but in the latter the kinetics of the reaction producing the solute may play a dominant role. [Pg.87]

Fuel. Natural gas is used as a primary fuel and source of heat energy throughout the iadustrialized countries for a broad range of residential, commercial, and iadustrial appHcations. The methane and other hydrocarbons react readily with oxygen to release heat by forming carbon dioxide and water through a series of kinetic steps that results ia the overall reaction,... [Pg.174]

The productivity of DR processes depeads oa chemical kinetics, as weU as mass and heat transport factors that combine to estabhsh the overall rate and extent of reduction of the charged ore. The rates of the reduction reactions are a function of the temperature and pressure ia the reductioa beds, the porosity and size distribution of the ore, the composition of the reduciag gases, and the effectiveness of gas—sohd contact ia the reductioa beds. The reductioa rate geaerahy iacreases with increasing temperature and pressure up to about 507 kPa (5 atm). [Pg.426]

Mechanisms. Mechanism is a technical term, referring to a detailed, microscopic description of a chemical transformation. Although it falls far short of a complete dynamical description of a reaction at the atomic level, a mechanism has been the most information available. In particular, a mechanism for a reaction is sufficient to predict the macroscopic rate law of the reaction. This deductive process is vaUd only in one direction, ie, an unlimited number of mechanisms are consistent with any measured rate law. A successful kinetic study, therefore, postulates a mechanism, derives the rate law, and demonstrates that the rate law is sufficient to explain experimental data over some range of conditions. New data may be discovered later that prove inconsistent with the assumed rate law and require that a new mechanism be postulated. Mechanisms state, in particular, what molecules actually react in an elementary step and what products these produce. An overall chemical equation may involve a variety of intermediates, and the mechanism specifies those intermediates. For the overall equation... [Pg.514]

Because of the tunabiUty, dye lasers have been widely used in both chemical and biological appHcations. The wavelength of the dye laser can be tuned to the resonant wavelength of an atomic or molecular system and can be used to study molecular stmcture as well as the kinetics of a chemical reaction. If tunabiHty is not required, a dye laser is not the preferred instmment, however, because a dye laser requires pumping with another laser and a loss of overall system efficiency results. [Pg.9]


See other pages where Kinetic overall kinetics is mentioned: [Pg.705]    [Pg.928]    [Pg.1094]    [Pg.1096]    [Pg.1590]    [Pg.1922]    [Pg.2115]    [Pg.2795]    [Pg.2912]    [Pg.2930]    [Pg.2933]    [Pg.3047]    [Pg.229]    [Pg.7]    [Pg.7]    [Pg.13]    [Pg.109]    [Pg.115]    [Pg.333]    [Pg.32]    [Pg.191]    [Pg.376]    [Pg.243]    [Pg.126]    [Pg.278]    [Pg.338]    [Pg.346]    [Pg.67]   
See also in sourсe #XX -- [ Pg.100 , Pg.101 , Pg.102 ]




SEARCH



Crystallization kinetics overall rate

Factors Influencing the Overall Crystallization Kinetics

General kinetic observations overall rate coefficient

Kinetic modeling overall

Kinetic modeling overall reaction kinetics

Kinetics of Overall Reactions for Ammonia Synthesis

Kinetics of overall reactions

Kinetics of the Overall Cure Reaction

Overall Kinetics

Overall Kinetics

Overall Kinetics for Ordering

Overall crystallization kinetics

Overall kinetics of oxygen consumption

Overall reaction kinetics

Second-Order Kinetics Overall

Synthesis of the Overall Kinetics

Total Lumping Overall Kinetics

© 2024 chempedia.info