Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer kinetic

Electron-pair donor (or Lewis base), NUCLEOPHILE ELECTRON SINK ELECTRON SPIN RESONANCE ELECTRON TRANSEER MARCUS EQUATION ELECTRODE KINETICS Electron transfer mechanism,... [Pg.739]

Another important feature of mass transfer processes is related to the very physical nature of the phenomenon. As such it is easily quantifiable and predictable. Thus the rate of mass transfer to and from an electrode may be determined a priori for a given electrochemical system. As a result this rate may be used as natural built-in clock by which the rate of other electrochemical processes may be measured. Such a property was apparent in our earlier discussions related to electrode kinetics (electron transfer and coupled chemical reactions). Basically it proceeds from the same idea as that frequently used in organic chemistry for relative rate constant determinations, when opposing a chemical reaction of known (or taken as the reference in a series of experiments) rate constant against a chemical reaction whose rate constant (or relative rate constant) is to be determined. Many such examples exist in the organic literature, among which are the famous radical-clocks ... [Pg.63]

Convergence of spectroscopic and kinetic electron transfer parameters for mixed-valence binuclear dipyridylamide ruthenium amine complexes 05CCR(249)507. [Pg.69]

Faradaic reactions are divided into reversible and irreversible reactions [9]. The degree of reversibility depends on the relative rates of kinetics (electron transfer at the interface) and mass transport. A Faradaic reaction with very fast kinetics relative to the rate of mass transport is reversible. With fast kinetics, large currents occur with small potential excursions away from equilibrium. Since the electrochemical product does not move away from the surface extremely fast (relative to the kinetic rate), there is an effective storage of charge near the electrode surface, and if the direction of current is reversed then some product that has been recently formed may be reversed back into its initial (reactant) form. [Pg.91]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

Double potential steps are usefiil to investigate the kinetics of homogeneous chemical reactions following electron transfer. In this case, after the first step—raising to a potential where the reduction of O to occurs under diffrision control—the potential is stepped back after a period i, to a value where tlie reduction of O is mass-transport controlled. The two transients can then be compared and tlie kinetic infomiation obtained by lookmg at the ratio of... [Pg.1929]

Influence of the Kinetics of Electron Transfer on the Faradaic Current The rate of mass transport is one factor influencing the current in a voltammetric experiment. The ease with which electrons are transferred between the electrode and the reactants and products in solution also affects the current. When electron transfer kinetics are fast, the redox reaction is at equilibrium, and the concentrations of reactants and products at the electrode are those specified by the Nernst equation. Such systems are considered electrochemically reversible. In other systems, when electron transfer kinetics are sufficiently slow, the concentration of reactants and products at the electrode surface, and thus the current, differ from that predicted by the Nernst equation. In this case the system is electrochemically irreversible. [Pg.512]

Decomposition of diphenoylperoxide [6109-04-2] (40) in the presence of a fluorescer such as perylene in methylene chloride at 24°C produces chemiluminescence matching the fluorescence spectmm of the fluorescer with perylene was reported to be 10 5% (135). The reaction follows pseudo-first-order kinetics with the observed rate constant increasing with fluorescer concentration according to = k [flr]. Thus the fluorescer acts as a catalyst for peroxide decomposition, with catalytic decomposition competing with spontaneous thermal decomposition. An electron-transfer mechanism has been proposed (135). [Pg.269]

R. van Eldik, ed.. Inorganic High Pressure Chemistry, Elsevier, Amsterdam, The Netherlands, 1986. High pressure coordination kinetics including solvent exchange, octahedral and four-coordinate substitution, electron transfer, photochemical, and bioinorganics are discussed. [Pg.174]

The rate of an electrochemical process can be limited by kinetics and mass transfer. Before considering electrode kinetics, however, an examination of the nature of the iaterface between the electrode and the electrolyte, where electron-transfer reactions occur, is ia order. [Pg.63]

Kinetics of the reaction of p-nitrochlorobenzene with the sodium enolate of ethyl cyanoacetate are consistent with this mechanism. Also, radical scavengers have no effect on the reaction, contrary to what would be expected for a chain mechanism in which aryl radicals would need to encounter the enolate in a propagation step. The reactant, /i-nitrophenyl chloride, however, is one which might also react by the addition-elimination mechanism, and the postulated mechanism is essentially the stepwise electron-transfer version of this mechanism. The issue then becomes the question of whether the postulated radical pair is a distinct intermediate. [Pg.732]

Among the dynamical properties the ones most frequently studied are the lateral diffusion coefficient for water motion parallel to the interface, re-orientational motion near the interface, and the residence time of water molecules near the interface. Occasionally the single particle dynamics is further analyzed on the basis of the spectral densities of motion. Benjamin studied the dynamics of ion transfer across liquid/liquid interfaces and calculated the parameters of a kinetic model for these processes [10]. Reaction rate constants for electron transfer reactions were also derived for electron transfer reactions [11-19]. More recently, systematic studies were performed concerning water and ion transport through cylindrical pores [20-24] and water mobility in disordered polymers [25,26]. [Pg.350]

In deriving the kinetics of activation-energy controlled charge transfer it was emphasised that a simple one-step electron-transfer process would be considered to eliminate the complications that arise in multistep reactions. The h.e.r. in acid solutions can be represented by the overall equation ... [Pg.1204]

In Section 1.4 it was assumed that the rate equation for the h.e.r. involved a parameter, namely the transfer coefficient a, which was taken as approximately 0-5. However, in the previous consideration of the rate of a simple one-step electron-transfer process the concept of the symmetry factor /3 was introduced, and was used in place of a, and it was assumed that the energy barrier was almost symmetrical and that /3 0-5. Since this may lead to some confusion, an attempt will be made to clarify the situation, although an adequate treatment of this complex aspect of electrode kinetics is clearly impossible in a book of this nature and the reader is recommended to study the comprehensive work by Bockris and Reddy. ... [Pg.1207]

Sub-picosecond photoinduced absorption studies were employed to demonstrate the speed of the photoinduced electron transfer. Upon addition of C(M to P30T, the P1A spectrum, decay kinetics, and intensity dependence all change dramatically 36J. Already at 1 ps after photoexcitation by a 100 fs pump pulse at... [Pg.275]

The mechanism proposed for the production of radicals from the N,N-dimethylaniline/BPO couple179,1 involves reaction of the aniline with BPO by a Sn-2 mechanism to produce an intermediate (44). This thermally decomposes to benzoyloxy radicals and an amine radical cation (46) both of which might, in principle, initiate polymerization (Scheme 3.29). Pryor and Hendrikson181 were able to distinguish this mechanism from a process involving single electron transfer through a study of the kinetic isotope effect. [Pg.86]


See other pages where Electron transfer kinetic is mentioned: [Pg.516]    [Pg.169]    [Pg.82]    [Pg.4940]    [Pg.501]    [Pg.90]    [Pg.516]    [Pg.169]    [Pg.82]    [Pg.4940]    [Pg.501]    [Pg.90]    [Pg.1922]    [Pg.1923]    [Pg.1928]    [Pg.1929]    [Pg.1933]    [Pg.1942]    [Pg.2421]    [Pg.2456]    [Pg.2948]    [Pg.2985]    [Pg.2990]    [Pg.474]    [Pg.20]    [Pg.237]    [Pg.270]    [Pg.178]    [Pg.433]    [Pg.1020]    [Pg.1123]    [Pg.69]    [Pg.18]    [Pg.194]    [Pg.974]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Electron kinetic

Electron kinetics

Electron transfer kinetics

Kinetic electronic

Kinetic transfer

© 2024 chempedia.info