Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic drawbacks

Master equation methods are not tire only option for calculating tire kinetics of energy transfer and analytic approaches in general have certain drawbacks in not reflecting, for example, certain statistical aspects of coupled systems. Alternative approaches to tire calculation of energy migration dynamics in molecular ensembles are Monte Carlo calculations [18,19 and 20] and probability matrix iteration [21, 22], amongst otliers. [Pg.3021]

Octabromodiphenyl Oxide. Octabromodiphenyl oxide [32536-52-0] (OBDPO) is prepared by bromination of diphenyl oxide. The degree of bromination is controlled either through stoichiometry (34) or through control of the reaction kinetics (35). The melting poiat and the composition of the commercial products vary somewhat. OBDPO is used primarily ia ABS resias where it offers a good balance of physical properties. Poor uv stabiUty is the primary drawback and use ia ABS is being supplanted by other brominated flame retardants, primarily TBBPA. [Pg.468]

A key feature of encapsulation processes (Figs. 4a and 5) is that the reagents for the interfacial polymerisation reaction responsible for shell formation are present in two mutually immiscible Hquids. They must diffuse to the interface in order to react. Once reaction is initiated, the capsule shell that forms becomes a barrier to diffusion and ultimately begins to limit the rate of the interfacial polymerisation reaction. This, in turn, influences morphology and uniformity of thickness of the capsule shell. Kinetic analyses of the process have been pubHshed (12). A drawback to the technology for some apphcations is that aggressive or highly reactive molecules must be dissolved in the core material in order to produce microcapsules. Such molecules can react with sensitive core materials. [Pg.320]

Tetrahydrofuran (THF) is usually the solvent of choice for poly (acrylates). It is an excellent thermodynamic as well as kinetic solvent, its only drawback being its volatility and flammability. [Pg.540]

Living radical polymerization currently dominates patents, publications and conferences on radical polymerization. The most popular systems, NMP, ATRP and RAFT, while offering unprecedented versatility are not without drawbacks and still have some limitations. Thus, while the progress in this field since the first edition of this book is substantial by any standard, there remains significant scope for new and improved processes. Further studies of the detailed kinetics and... [Pg.563]

Despite its widespread application [31,32], the kinetic resolution has two major drawbacks (i) the maximum theoretical yield is 50% owing to the consumption of only one enantiomer, (ii) the separation of the product and the remaining starting material may be laborious. The separation is usually carried out by chromatography, which is inefficient on a large scale, and several alternative methods have been developed (Figure 6.2). For example, when a cyclic anhydride is the acyl donor in an esterification reaction, the water-soluble monoester monoacid is separable by extraction with an aqueous alkaline solution [33,34]. Also, fiuorous phase separation techniques have been combined with enzymatic kinetic resolutions [35]. To overcome the 50% yield limitation, one of the enantiomers may, in some cases, be racemized and resubmitted to the resolution procedure. [Pg.135]

Of the two former processes shown in Scheme 5.2, the kinetic resolution of race-mates has found a much greater number of applications than the desymmetrization of prochiral or meso compounds. This is due to the fact that racemic substrates are much more common than prochiral ones. However, kinetic resolution suffers from a number of drawbacks, the main being the following ... [Pg.101]

In this chapter, we describe some of the more widely used and successful kinetic techniques involving controlled hydrodynamics. We briefly discuss the nature of mass transport associated with each method, and assess the attributes and drawbacks. While the application of hydrodynamic methods to liquid liquid interfaces has largely involved the study of spontaneous processes, several of these methods can be used to investigate electrochemical processes at polarized ITIES we consider these applications when appropriate. We aim to provide an historical overview of the field, but since some of the older techniques have been reviewed extensively [2,3,13], we emphasize the most recent developments and applications. [Pg.333]

Although the Lewis cell was introduced over 50 years ago, and has several drawbacks, it is still used widely to study liquid-liquid interfacial kinetics, due to its simplicity and the adaptable nature of the experimental setup. For example, it was used recently to study the hydrolysis kinetics of -butyl acetate in the presence of a phase transfer catalyst [21]. Modeling of the system involved solving mass balance equations for coupled mass transfer and reactions for all of the species involved. Further recent applications of modified Lewis cells have focused on stripping-extraction kinetics [22-24], uncatalyzed hydrolysis [25,26], and partitioning kinetics [27]. [Pg.335]

There are several drawbacks to the RDC that need to be emphasized. First, the fact that the interface must be supported adds a considerable resistance to the transport of species, which is in addition to that from the concentration boundary layers on both sides of the membrane. This limits the range of kinetics that can be studied. Second, in practical applications, blocking of the membrane can be problematic for some reactions. Third, measurements are generally made in the bulk of the solution and not at the interface although, as mentioned above, for certain processes it is possible to measure fluxes via a ring or an arc electrode. [Pg.340]

This review has highlighted the wide range of techniques, which have been used to investigate reaction kinetics at liquid-liquid interfaces. While significant progress has been made in the last few years, in particular, many of the techniques currently in use have a number of drawbacks, and there is considerable scope for the introduction of further techniques which can match the criteria proposed in Section I. [Pg.356]

As an example, consider the use of PVPy as a solid poison in the study of poly(noibomene)-supported Pd-NHC complexes in Suzuki reactions of aryl chlorides and phenylboroiuc acid in DMF (23). This polymeric piecatalyst is soluble under some of the reaction conditions employed and thus it presents a different situation from the work using porous, insoluble oxide catalysts (12-13). Like past studies, addition of PVPy resulted in a reduction in reaction yield. However, the reaction solution was observed to become noticeably more viscous, and the cause of the reduced yield - catalyst poisoning vs. transport limitations on reaction kinetics - was not immediately obvious. The authors thus added a non-functionalized poly(styrene), which should only affect the reaction via non-specific physical means (e.g., increase in solution viscosity, etc.), and also observed a decrease in reaction yield. They thus demonstrated a drawback in the use of the potentially swellable PVPy with soluble (23) or swellable (20) catalysts in certain solvents. [Pg.196]

Reports have shown solid catalysts for esterification of FFA have one or more problems such as high cost, severe reaction conditions, slow kinetics, low or incomplete conversions, and limited lifetime. We will present research describing our newly developed polymeric catalyst technology which enables the production of biodiesel from feedstock containing high levels (> 1 wt %) of FFAs. The novel catalyst, named AmberlysH BD20, overcomes the traditional drawbacks such as limited catalyst life time, slow reaction rates, and low conversions. [Pg.281]

The main drawback of these kinetic studies is that the kinetic measurements were carried out in a narrow temperature range (generally, 20°-30°C). However, the study in Reference (337) remains the only direct kinetic investigation of [3 + 2]-cycloaddition of nitronates to the C,C double bond. [Pg.586]

It is this relative insensitivity that is usually considered as the major drawback of NMR spectroscopy. However, the flexibility of the NMR technique, with the ability to obtain structural information, quantitative data (e.g. kinetic parameters), as well as an indication of molecular volume, using pulsed gradient spin echo (PGSE) NMR diffusion methods [6], makes NMR a most valuable tool. [Pg.298]


See other pages where Kinetic drawbacks is mentioned: [Pg.149]    [Pg.149]    [Pg.2826]    [Pg.503]    [Pg.174]    [Pg.308]    [Pg.91]    [Pg.391]    [Pg.319]    [Pg.135]    [Pg.673]    [Pg.193]    [Pg.200]    [Pg.279]    [Pg.210]    [Pg.82]    [Pg.284]    [Pg.140]    [Pg.239]    [Pg.172]    [Pg.30]    [Pg.108]    [Pg.97]    [Pg.94]    [Pg.389]    [Pg.611]    [Pg.261]    [Pg.300]    [Pg.167]    [Pg.182]    [Pg.194]    [Pg.204]    [Pg.15]    [Pg.178]    [Pg.32]    [Pg.264]    [Pg.25]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Drawbacks

© 2024 chempedia.info