Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones thioketal formation

An older method,which also retains the double bond in its original location, utilizes the fact that thioketal formation from A" -3-ketones does not induce bond migration. Subsequent desulfurization with Raney nickel gives the A" -olefin (see section XI-D). [Pg.346]

Thioketals are readily formed by acid-catalyzed reaction with ethane-dithiol. Selective thioketal formation is achieved at C-3 in the presence of a 6-ketone by carrying out the boron trifluoride catalyzed reaction in diluted medium. Selective protection of the 3-carbonyl group as a thioketal has been effected in high yield with A" -3,17-diketones, A" -3,20-diketones and A" -3,l 1,17-triones in acetic acid at room temperature in the presence of p-toluenesulfonic acid. In the case of thioketals the double bond remains in the 4,5-position. This result is attributed to the greater nucleophilicity of sulfur as compared to oxygen, which promotes closure of intermediate (66) to the protonated cyclic mercaptal (67) rather than elimination to the 3,5-diene [cf. ketal (70) via intermediates (68) and (69)]." " ... [Pg.392]

Unsubstituted 20-ketones undergo exchange dioxolanation nearly with the same ease as saturated 3-ketones although preferential ketalization at C-3 can be achieved under these conditions. " 20,20-Cycloethylenedioxy derivatives are readily prepared by acid-catalyzed reaction with ethylene glycol. The presence of a 12-ketone inhibits formation of 20-ketals. Selective removal of 20-ketals in the presence of a 3-ketal is effected with boron trifluoride at room temperature. Hemithioketals and thioketals " are obtained by conventional procedures. However, the 20-thioketal does not form under mild conditions (dilution technique). ... [Pg.398]

For over a decade, hormonal activity of any consequence was thought to be limited to steroids containing a A4-3-keto group. A recent development of much interest, therefore, is the removal of the 3-ketone from VIII (R = X = H) via thioketal formation and reduction with sodium in liquid ammonia. Subsequent oxidation and ethinylation afforded the 3-deoxy derivatives of XIII and XV (20). The latter, lynestrenol, possesses marked progestational properties. High potency was also found when the ketone (XV, R = X = H) was reduced... [Pg.200]

Thioketal formation followed by desulfurization provides us with a third method that can be used to convert the carbonyl group of a ketone into a methylene group. We have already seen the other two methods—the Clemmensen reduction and the Wolff-Kishner reduction (Sections 15.15 and 18.6). [Pg.761]

Dimethyl ketals and enol ethers are stable to the conditions of oxime formation (hydroxylamine acetate or hydroxylamine hydrochloride-pyridine). Thioketals and hemithioketals are cleaved to the parent ketones by cadmium carbonate and mercuric chloride. Desulfurization of thioketals with Raney nickel leads to the corresponding methylene compounds, while thioenol ethers give the corresponding olefin. In contrast, desulfurization of hemithioketals regenerates the parent ketone. ... [Pg.385]

Complications often arise in the use of 1,3-diketones under the above reaction conditions. This is primarily due to the lack of regioselectivity with regard to formation of the intermediate thioacetal. However, when benzoyl acetone derivatives are employed, the thioketal forms preferentially with the aromatic ketone. ... [Pg.189]

Acetalization or ketalization with silylated glycols or 1,3-propanediols and the formation of thioketals by use of silylated 1,2-ethylenedithiols and silylated 2-mer-captoethylamines have already been discussed in Sections 5.1.1 and 5.1.5. For cyclizations of ketones such as cyclohexanone or of benzaldehyde dimethyl acetal 121 with co-silyl oxyallyltrimethylsilanes 640 to form unsaturated spiro ethers 642 and substituted tetrahydrofurans such as 647, see also Section 5.1.4. (cf. also the reaction of 654 to give 655 in Section 5.2) Likewise, Sila-Pummerer cyclizations have been discussed in Chapter 8 (Schemes 8.17-8.20). [Pg.217]

With the above methodology in hand, a similar strategy was attenq)ted for the synthesis of the aryl acetic acid 7 (Scheme 7). The aniline 5 was treated with 2,5-dimethoxytetrahy ofuran in toluene and acetic acid to get the W-aryl pyrrole 28. The Vilsmeier/Triedel-Crafts acylation of 28 followed by decarbonylation afforded the keto ester 30. However, the reduction of the keto ester proved to be difficult. Most of the general methods employed for the reduction of ketones gave a mixture of products. However, a two step process involving the formation of the thioketal 31 followed by desulfurization with Ni proved to be successful. Although, the standard Wolff-Kishner conditions could not be employed in the system due to the susceptibility of the nitrile to hydrolysis, a modified Wolff-Kishner reduction (8) proved to be fruitful. [Pg.118]

Thiols are the sulfur analogs of alcohols (Section 15.11). The sulfur atom of a thiol is a better nucleophile than the oxygen atom of an alcohol. Thus, thiols react with aldehydes or ketones to form thioacetals or thioketals by a mechanism similar to that described for acetals and ketals. These sulfur derivatives form in high yield because the equdibrium constant for thioacetal formation is much greater than that for acetal formation. We use Lewis acids such as BFj or ZnCl2 rather than protic acids to catalyze the formation of the thioacetal. Both 1,2-ethanedithiol and 1,3-propanedithiol are used to form cyclic thioacetals and thioketals. [Pg.641]


See other pages where Ketones thioketal formation is mentioned: [Pg.837]    [Pg.328]    [Pg.129]    [Pg.270]    [Pg.276]    [Pg.45]    [Pg.774]    [Pg.800]    [Pg.1277]    [Pg.12]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Ketones formation

Thioketal

Thioketal formation

© 2024 chempedia.info