Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones reactions, transition metal

Acid chlorides are prepared by standard methods and undergo the usual acid chloride reactions. They have found important applications as substrates in the syntheses of ketones by transition metal-catalyzed coupling reactions with organometallics (Section 6.02.5.5.14). Acid chlorides (424) are also good substrates for the preparation of ketones (425) using organomanganese(II) iodide, especially for the preparation of alkyl pyrimidinyl ketones <86ACS(B)764>. [Pg.183]

An excellent method for converting an acid chloride to a ketone employs transition metal catalysts such as ferric chloride in conjunction with low reaction temperatures. Reaction of butylmagnesium bromide with octanoyl chloride at -60°C gave a mixture of 13% of 80, 4% of 81 (from the secondary reaction of butyl-magnesium bromide and 80), and 60% of 82. when a catalytic amount (2 mol %) of ferric chloride (FeCls) was added, however, a 76% yield of ketone 80 was obtained, along with 3% of the over alkylation product, 81.94 If the intermediate ketone is unreactive to nucleophilic substitution due steric hindrance or peculiar electronic factors (diisopropyl ketone and phenyl-rerr-butyl ketone are both sterically hindered) the ketone can usually be isolated (sec. 8.4.G for problems with hindered ketones). In many instances, however, even dry ice temperatures and reverse addition techniques give poor yields of the ketone.95... [Pg.588]

Nitromethane, the weakest known ligand for transition metal ions, is readily replaced by other weak ligands such as esters, aldehydes, ethers, and ketones. Using this ligand substitution reaction, transition metal solvates of acetone may be prepared. [Pg.114]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

Condensation of vinyl chloride with formaldehyde and HCl (Prins reaction) yields 3,3-dichloro-l-propanol [83682-72-8] and 2,3-dichloro-l-propanol [616-23-9]. The 1,1-addition of chloroform [67-66-3] as well as the addition of other polyhalogen compounds to vinyl chloride are cataly2ed by transition-metal complexes (58). In the presence of iron pentacarbonyl [13463-40-6] both bromoform [75-25-2] CHBr, and iodoform [75-47-8] CHl, add to vinyl chloride (59,60). Other useful products of vinyl chloride addition reactions include 2,2-di luoro-4-chloro-l,3-dioxolane [162970-83-4] (61), 2-chloro-l-propanol [78-89-7] (62), 2-chloropropionaldehyde [683-50-1] (63), 4-nitrophenyl-p,p-dichloroethyl ketone [31689-13-1] (64), and p,p-dichloroethyl phenyl sulfone [3123-10-2] (65). [Pg.415]

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

Guo et al. [70,71,73] recently attempted to hydrogenate NBR in emulsion form using Ru-PCy complexes. However, successful hydrogenation can only be obtained when the emulsion is dissolved in a ketone solvent (2-butanone). A variety of Ru-phosphine complexes have been studied. Crosslinking of the polymer could not be avoided during the reaction. The use of carboxylic acids or first row transition metal salts as additives minimized the gel formation. The reactions under these conditions require a very high catalyst concentration for a desirable rate of hydrogenation. [Pg.564]

The rate of oxidation/reduction of radicals is strongly dependent on radical structure. Transition metal reductants (e.g. TiMt) show selectivity for electrophilic radicals (e.g. those derived by tail addition to acrylic monomers or alkyl vinyl ketones - Scheme 3.89) >7y while oxidants (CuM, Fe,M) show selectivity for nucleophilic radicals (e.g. those derived from addition to S - Scheme 3,90).18 A consequence of this specificity is that the various products from the reaction of an initiating radical with monomers will not all be trapped with equal efficiency and complex mixtures can arise. [Pg.136]

Transition-metal-based Lewis acids such as molybdenum and tungsten nitro-syl complexes have been found to be active catalysts [49]. The ruthenium-based catalyst 50 (Figure 3.6) is very effective for cycloadditions with aldehyde- and ketone-bearing dienophiles but is ineffective for a,)S-unsaturated esters [50]. It can be handled without special precautions since it is stable in air, does not require dry solvents and does not cause polymerization of the substrates. Nitromethane was the most convenient organic solvent the reaction can also be carried out in water. [Pg.114]

It is believed that clay minerals promote organic reactions via an acid catalysis [2a]. They are often activated by doping with transition metals to enrich the number of Lewis-acid sites by cationic exchange [4]. Alternative radical pathways have also been proposed [5] in agreement with the observation that clay-catalyzed Diels-Alder reactions are accelerated in the presence of radical sources [6], Montmorillonite K-10 doped with Fe(III) efficiently catalyzes the Diels-Alder reaction of cyclopentadiene (1) with methyl vinyl ketone at room temperature [7] (Table 4.1). In water the diastereoselectivity is higher than in organic media in the absence of clay the cycloaddition proceeds at a much slower rate. [Pg.144]

When arylhydrazones of aldehydes or ketones are treated with a catalyst, elimination of ammonia takes place and an indole is formed, in the Fischer indole synthesis,Zinc chloride is the catalyst most frequently employed, but dozens of others, including other metal halides, proton and Lewis acids, and certain transition metals have also been used. Microwave irradiation has been used to facilitate this reaction. Aniline derivatives react with a-diazoketones, in the presence of a... [Pg.1452]

For transition-metal-catalyzed hydrogenation of ketones and aldehydes, H2 or the combination of PrOH with a base has been widely used as the hydrogen source (Scheme 8). In case of using H2, the reaction is called hydrogenation, whereas the reaction using the combination of PrOH with a base is especially called transfer hydrogenation. ... [Pg.35]

Employing ketones or aldehydes as starting materials, the corresponding silylethers are obtained. Thereafter, the oxidation or hydrolysis of the obtained silylethers gives the corresponding alcohols (Scheme 17). In most cases, a hydride (silyl) metal complex H-M-Si (M = transition-metal), which is generated by an oxidative addition of H-Si bond to the low-valent metal center, is a key intermediate in the hydrosilylation reaction. [Pg.44]

Hydrido(alkoxo) complexes of late transition metals are postulated as intermediates in the transition metal-catalyzed hydrogenation of ketones (Eq. 6.17), the hydrogenation of CO to MeOH, hydrogen transfer reactions and alcohol homologation. However, the successful isolation of such complexes from the catalytic systems was very rare [32-37]. [Pg.180]

On the other hand, the enantioselective 1,4-addition of carbanions such as enolates to linear enones is an interesting challenge, since relatively few efficient methods exist for these transformations. The Michael reaction of p-dicarbonyl compounds with a,p-unsaturated ketones can be catalysed by a number of transition-metal compounds. The asymmetric version of this reaction has been performed using chiral diol, diamine, and diphosphine ligands. In the past few years, bidentate and polydentate thioethers have begun to be considered as chiral ligands for this reaction. As an example, Christoffers et al. have developed the synthesis of several S/O-bidentate and S/O/S-tridentate thioether... [Pg.97]

For transition-metal catalyzed hydroxylation of alkane C-H bonds, the reactions of alkanes with platinum(II) complexes were the most successful. In an aqueous solution of hexachloroplatinic acid and Na2PtCl4, alkanes were converted into a mixture of isomeric alkyl chlorides, alcohols, and ketones, and the platinum(IV) is reduced to platinum(II).7 The kinetics of the reaction with methane as the alkane have been described in detail.8... [Pg.35]

The thermo- and photocycloaddition of alkenes will be discussed in Chapter 12, on pericyclic reactions. On the other hand, transition-metals have effectively catalyzed some synthetically useful cycloaddition reactions in water. For example, Lubineau and co-worker reported a [4 + 3] cycloaddition by reacting a,a-dibromo ketones with furan or cyclopen-tadiene mediated by iron or copper, or a-chloro ketones in the presence of triethylamine (Eq. 3.48).185... [Pg.79]

The reaction between an early transition metal-alkylidene and a ketone to yield a metal-oxo group and an olefin was first noted by Schrock Schrock, R. R. J. Am. Chem. Soc. 1976, 98, 5399. [Pg.232]

During the past few years, increasing numbers of reports have been published on the subject of domino reactions initiated by oxidation or reduction processes. This was in stark contrast to the period before our first comprehensive review of this topic was published in 1993 [1], when the use of this type of transformation was indeed rare. The benefits of employing oxidation or reduction processes in domino sequences are clear, as they offer easy access to reactive functionalities such as nucleophiles (e. g., alcohols and amines) or electrophiles (e. g., aldehydes or ketones), with their ability to participate in further reactions. For that reason, apart from combinations with photochemically induced, transition metal-catalyzed and enzymatically induced processes, all other possible constellations have been embedded in the concept of domino synthesis. [Pg.494]


See other pages where Ketones reactions, transition metal is mentioned: [Pg.18]    [Pg.269]    [Pg.68]    [Pg.1324]    [Pg.436]    [Pg.269]    [Pg.437]    [Pg.68]    [Pg.346]    [Pg.379]    [Pg.114]    [Pg.224]    [Pg.465]    [Pg.27]    [Pg.483]    [Pg.48]    [Pg.95]    [Pg.1037]    [Pg.1038]    [Pg.286]    [Pg.233]    [Pg.270]    [Pg.306]    [Pg.1063]    [Pg.1067]    [Pg.1336]    [Pg.150]    [Pg.210]    [Pg.114]    [Pg.91]    [Pg.477]   


SEARCH



Ketones metalation

Transition metal reactions

© 2024 chempedia.info