Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketone hydrophobic

A particular example is the Diels-Alder reaction,21,22 which attracted interest after a publication23 reporting large rate enhancement and a change in stereochemistry in water for the reaction between cyclopentadiene and methyl vinyl ketone. Hydrophobic interactions between the reacting molecules and hydrogen bonding of water to the carbonyl moiety were found to play the major role in the observed phenomena.14,24,25... [Pg.809]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

Figure 8.23 Reduction of ketones with Geotrichum candidum in the presence of hydrophobic polymer XAD [19a],... Figure 8.23 Reduction of ketones with Geotrichum candidum in the presence of hydrophobic polymer XAD [19a],...
Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

Pt-catalyzed hydration of various aliphatic and aromatic alkynes under phase transfer conditions in (CH2C1)2/H20 in the presence of Aliquat 336 led to either a Markovnikov product, mixtures of two ketones, or ketones with the carbonyl group positioned away from the bulky side.72 In the absence of the phase transfer reagent, Aliquat 336, hardly any reaction took place. Recently, a hydrophobic, low-loading and alkylated polystyrene-supported sulfonic acid (LL-ALPS-SO3H) has also been developed for the hydration of terminal alkynes in pure water, leading to ketones as the product.73 Under microwave irradiation, the hydration of terminal arylalkynes was reported to proceed in superheated water (200°C) without any catalysts.74... [Pg.119]

The DBSA-system is also applicable for the dithioacetalization of aldehdyes and ketones with 1,2-ethanedithiol to give the corresponding dithioacetals (Scheme 5.4, d). Increasing the reaction temperature decreases the yield of the products. Interestingly, increases in the concentration of the surfactant also decrease the yield of products formed, while shortening the alkyl chain of the surfactant abolishes its catalytic activity. Optical microscopy shows the formation of micelles, which are proposed to form hydrophobic environments and decrease the effective concentration of water and facilitate the dehydrative condensation reactions. [Pg.154]

The use of chiral ruthenium catalysts can hydrogenate ketones asymmetrically in water. The introduction of surfactants into a water-soluble Ru(II)-catalyzed asymmetric transfer hydrogenation of ketones led to an increase of the catalytic activity and reusability compared to the catalytic systems without surfactants.8 Water-soluble chiral ruthenium complexes with a (i-cyclodextrin unit can catalyze the reduction of aliphatic ketones with high enantiomeric excess and in good-to-excellent yields in the presence of sodium formate (Eq. 8.3).9 The high level of enantioselectivity observed was attributed to the preorganization of the substrates in the hydrophobic cavity of (t-cyclodextrin. [Pg.217]

Thiolates, generated in situ by the action of ammonium tetra-thiomolybdate on alkyl halides, thiocyanates, and disulfides, undergo conjugate addition to a, (1-unsaturatcd esters, nitriles, and ketones in water under neutral conditions (Eq. 10. II).29 Conjugate addition of thiols was also carried out in a hydrophobic ionic liquid [bmim]PF6/water-solvent system (2 1) in the absence of any acid catalyst to afford the corresponding Michael adducts in high to quantitative yields with excellent 1,4-selectivity under mild and neutral conditions (Eq. 10.12). The use of ionic liquids helps to avoid the use of either acid or base catalysts... [Pg.318]

An ab initio MO calculation by Jorgensen revealed enhanced hydrogen bonding of a water molecule to the transition states for the Diels-Alder reactions of cyclopentadiene with methyl vinyl ketone and acrylonitrile, which indicates that the observed rate accelerations for Diels-Alder reactions in aqueous solution arise from the hydrogenbonding effect in addition to a relatively constant hydrophobic term.7,76 Ab initio calculation using a self-consistent reaction field continuum model shows that electronic and nuclear polarization effects in solution are crucial to explain the stereoselectivity of nonsymmetrical... [Pg.391]

DCA forms canal inclusion compounds, known as choleic acids, which most frequently have the orthorhombic space group P212121, or less frequently Pl l. In such crystals the DCA molecules hydrogen bond to each other to form an extended bilayer structure, thereby creating a hydrophobic canal between adjacent bilayers. The guest molecules present in these canals therefore tend to be non-polar or moderately polar molecules such as aromatic compounds, alkenes, ketones and certain carboxylic acids 92). Since the bilayers are held together only by van der Waals forces the canals are able to adopt different dimensions to accommodate the variety of... [Pg.166]

Krauueer, M., Hummel, W. and Groeger, H. (2007) Enantioselective one-pot two-step synthesis of hydrophobic allylic alcohols in aqueous medium through the combination of a Wittig reaction and an enzymatic ketone reduction. European Journal of Organic Chemistry, (31), 5175—5179. [Pg.164]

Musa, M.M., Ziegelmann-Field, K.I., Vieille, C.etal. (2007) Xerogel-encapsulated W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus performs asymmetric reduction of hydrophobic ketones in organic solvents. Angewandte Chemie—International Edition, 46 (17), 3091-3094. [Pg.165]

Aleksic et al. [47] estimated the hydrophobicity of miconazole and other antimycotic drugs by a planar chromatographic method. The retention behavior of the drugs have been determined by TLC by using the binary mobile phases acetone-n-hexane, methanol toluene, and methyl ethyl ketone toluene containing different amounts of organic modifier. Hydrophobicity was established from the linear relationships between the solute RM values and the concentration of organic modifier. Calculated values of RMO and CO were considered for application in quantitative structure activity relationship studies of the antimycotics. [Pg.45]

In the multimedia models used in this series of volumes, an air-water partition coefficient KAW or Henry s law constant (H) is required and is calculated from the ratio of the pure substance vapor pressure and aqueous solubility. This method is widely used for hydrophobic chemicals but is inappropriate for water-miscible chemicals for which no solubility can be measured. Examples are the lower alcohols, acids, amines and ketones. There are reported calculated or pseudo-solubilities that have been derived from QSPR correlations with molecular descriptors for alcohols, aldehydes and amines (by Leahy 1986 Kamlet et al. 1987, 1988 and Nirmalakhandan and Speece 1988a,b). The obvious option is to input the H or KAW directly. If the chemical s activity coefficient y in water is known, then H can be estimated as vwyP[>where vw is the molar volume of water and Pf is the liquid vapor pressure. Since H can be regarded as P[IC[, where Cjs is the solubility, it is apparent that (l/vwy) is a pseudo-solubility. Correlations and measurements of y are available in the physical-chemical literature. For example, if y is 5.0, the pseudo-solubility is 11100 mol/m3 since the molar volume of water vw is 18 x 10-6 m3/mol or 18 cm3/mol. Chemicals with y less than about 20 are usually miscible in water. If the liquid vapor pressure in this case is 1000 Pa, H will be 1000/11100 or 0.090 Pa m3/mol and KAW will be H/RT or 3.6 x 10 5 at 25°C. Alternatively, if H or KAW is known, C[ can be calculated. It is possible to apply existing models to hydrophilic chemicals if this pseudo-solubility is calculated from the activity coefficient or from a known H (i.e., Cjs, P[/H or P[ or KAW RT). This approach is used here. In the fugacity model illustrations all pseudo-solubilities are so designated and should not be regarded as real, experimentally accessible quantities. [Pg.8]

Mannich and related readions provide one of the most fundamental and useful methods for the synthesis of p-amino carbonyl compounds, which constitute various pharmaceuticals, natural products, and versatile synthetic intermediates.1271 Conventional protocols for three-component Mannich-type readions of aldehydes, amines, and ketones in organic solvents indude some severe side reactions and have some substrate limitations, espedally for enolizable aliphatic aldehydes. The dired synthesis of P-amino ketones from aldehydes, amines, and silyl enolates under mild conditions is desirable from a synthetic point of view. Our working hypothesis was that aldehydes could read with amines in a hydro-phobic reaction fidd created in water in the presence of a catalytic amount of a metal triflate and a surfactant to produce imines, which could then read with hydrophobic silyl enolates. [Pg.10]

Replacement of the hydrophilic acrylamide by the more hydrophobic N-iso-propylacrylamide, in combination with the pre-functionalization of the capillary with (3-methacryloyloxypropyl) trimethoxysilane, afforded a monolithic gel covalently attached to the capillary wall. A substantial improvement in the separations of aromatic ketones and steroids was observed using these fritless hydrogel columns, as seen by the column efficiencies of 160,000 found for hydrocortisone and testosterone [92]. The separations exhibited many of the attributes typical of reversed-phase chromatography and led to the conclusion that, in contrast to the original polyacrylamide-based gels, size-exclusion mechanism was no longer the primary mechanism of separation. [Pg.27]


See other pages where Ketone hydrophobic is mentioned: [Pg.449]    [Pg.449]    [Pg.23]    [Pg.26]    [Pg.169]    [Pg.70]    [Pg.359]    [Pg.67]    [Pg.136]    [Pg.358]    [Pg.386]    [Pg.168]    [Pg.333]    [Pg.219]    [Pg.350]    [Pg.155]    [Pg.155]    [Pg.68]    [Pg.298]    [Pg.35]    [Pg.21]    [Pg.591]    [Pg.163]    [Pg.95]    [Pg.134]    [Pg.678]    [Pg.161]    [Pg.1067]    [Pg.1068]    [Pg.21]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



© 2024 chempedia.info