Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Jones reagent ether

The sisyl ether is stable to Grignard and Wittig reagents, oxidation with Jones reagent, KF/18-crown-6, CsF, and strongly acidic conditions (TsOH, HCl) that cleave most other silyl groups. It is not stable to alkyllithiums or LiAlH4. [Pg.146]

With a secure route to pentacyclic amine 2, the completion of the total synthesis of 1 requires only a few functional group manipulations. When a solution of 2 in ethanol is exposed to Pd-C in an atmosphere of hydrogen, the isopropenyl double bond is saturated. When a small quantity of HCI is added to this mixture, the hydro-genolysis of the benzyl ether is accelerated dramatically, giving alcohol 15 in a yield of 96%. Oxidation of the primary alcohol in 15 with an excess of Jones reagent, followed by Fischer esterification, gives ( )-methyl homosecodaphniphyllate [( )-1] in an overall yield of 85 % from 2. [Pg.469]

The synthetic sequence, which shows only the succesful solutions adopted in every step, is outlined in Scheme 13.1.11. Reaction of l Chloroadamantan-4-one (39) [15] with sodium-potassium alloy in ether gave a mixture of ketonic and hydroxylated material which upon oxidation with Jones reagent gave 7-methylenebicyclo[3.3.1]nonan-2-one (40) in 75% yield. Reduction of 40 with sodium borohydride gave the alcohol 41 which could be also obtained in better yields from l-chloroadamantan-4-one with a large excess of sodium-potassium... [Pg.351]

Finally, the remaining steps were accomplished by methylation of 26a with methyl fluorosulphonate in ether to give the methylammonium salt 25, reductive cleavage of the N-0 bond with LAH and oxidation of the resulting alcohol with Jones reagent. The yields of the last three steps are almost quantitative and the overall yield of the seven steps synthetic sequence leading to optically pure (+)-luciduline (1) is 33%. [Pg.363]

Synthesis of racemic naproxene Friedel-Crafts acylation (aluminum chloride - nitrobenzene) of p-naphthol methyl ether affords 2-acetyl-6-methoxy naphthalene, which, when treated with either dimethyl sulfonium or dimethylsulfoxonium methylide, gives 2-(6-methoxynaphthalen-2-yl)propylene oxide. Treatment of the latter with boron trifluoride etherate in tetrahydrofuran gives 2-(6-methoxynaphthalen-2-yl)propionaldehyde, which is oxidized using Jones reagent (4 M chromic acid) to yield the racemic 2-(6-methoxynaphthalen-2-yl)propionic acid. [Pg.86]

Because of the special structural requirements of the resin-bound substrate, this type of cleavage reaction lacks general applicability. Some of the few examples that have been reported are listed in Table 3.19. Lactones have also been obtained by acid-catalyzed lactonization of resin-bound 4-hydroxy or 3-oxiranyl carboxylic acids [399]. Treatment of polystyrene-bound cyclic acetals with Jones reagent also leads to the release of lactones into solution (Entry 5, Table 3.19). Resin-bound benzylic aryl or alkyl carbonates have been converted into esters by treatment with acyl halides and Lewis acids (Entry 6, Table 3.19). Similarly, alcohols bound to insoluble supports as benzyl ethers can be cleaved from the support and simultaneously converted into esters by treatment with acyl halides [400]. Esters have also been prepared by treatment of carboxylic acids with an excess of polystyrene-bound triazenes here, diazo-nium salts are released into solution, which serve to O-alkylate the acid (Entry 7, Table 3.19). This strategy can also be used to prepare sulfonates [401]. [Pg.82]

In fact, it has been reported34 that benzyl ethers can react with Jones reagent, resulting in the formation of ketones and benzoates. This happens under relatively harsh conditions, and nonnally no interference from benzyl ethers is observed during the oxidation of alcohols with Jones reagent. [Pg.9]

The acid 350 was demethylated with pyridine hydrochloride, then realkylated with benzyl bromide in aqueous potassium hydroxide to give 351. The latter was converted to the diazoketone 352 by the sequential treatment of 351 with oxalyl chloride and etheral diazomethane. Reaction of 352 with concentrated hydrobromic acid gave the bromoketone 353. The latter was reduced with sodium borohydride at pH 8 -9 to yield a mixture of diastere-omeric bromohydrins 354. Protection of the free hydroxyl as a tetrahydro-pyranyl ether and hydrogenolysis of the benzyl residue afforded 355. The phenol 355 was heated under reflux with potassium m/V-butoxide in tert-butyl alcohol for 5 hr to give a 3 1 epimeric mixture of dienone ethers 356 and 357 in about 50% yield. Treatment of this mixture with dilute acid gave the epimeric alcohols 358 and 359. This mixture was oxidized with Jones reagent to afford the diketone 349. [Pg.183]

Jones reagent (1, 142-143).1 Phenols substituted by at least one alkyl group in the ortfio-position can be oxidized to / -quinones by a two-phase (ether/aqueous Cr03) Jones oxidation. Yields range from 30 to 85%, but the process is simple and more economical than use of Fremy s salt or thallium(III) nitrate. [Pg.131]

Cr03/H2S04 (H2Cr04) (Jones reagent chromic acid) Acetone ether OtoRT 2° alcohol—) ketone 1° alcohol—) acid aldehyde -) alcohol... [Pg.285]

Chromium trioxide [chromium(VI) oxide, chromic add, or chromic anhydride], Cr03 (dark red crystals, mp 195 °C), is one of the most powerful and universal oxidants. It is applied in solutions in acetic acid, dilute sulfuric acid, a mixture of acetic acid and dilute sulfuric acid, dilute sulfuric acid and acetone (Jones reagent), acetic anhydride and acetic acid (Fieser reagent) [535], water, water and ether [536,537,535], dichloromethane [539],... [Pg.21]

The main applications of oxidation with chromium trioxide are transformations of primary alcohols into aldehydes [184, 537, 538, 543, 570, 571, 572, 573] or, rarely, into carboxylic acids [184, 574], and of secondary alcohols into ketones [406, 536, 542, 543, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584]. Jones reagent is especially successful for such oxidations. It is prepared by diluting with water a solution of 267 g of chromium trioxide in a mixture of 230 mL of concentrated sulfuric acid and 400 mL of water to 1 L to form an 8 N CrOj solution [565, 572, 579, 581, 585, 556]. Other oxidations with chromic oxide include the cleavage of carbon-carbon bonds to give carbonyl compounds or carboxylic acids [482, 566, 567, 569, 580, 587, 555], the conversion of sulfides into sulfoxides [541] and sulfones [559], and the transformation of alkyl silyl ethers into ketones or carboxylic acids [590]. [Pg.22]

A solution of chromium trioxide in dilute sulfuric acid used in aqueous acetone is called Jones reagent [572]. Other solvents of chromium trioxide are ether [535] and hexamethylphosphoric triamide (HMPA) [543. Oxidations are also carried out with chromium trioxide adsorbed on Celite (diatomaceous earth) [53S], silica gel [537], or an ion exchanger such as Amberlyst A26 (a macroreticular quaternary ammonium salt anion exchanger) [571, 617]. Such oxidations often take place at room temperature and can be used not only for saturated alcohols but also for unsaturated and aromatic alcohols (equations 208 and 209). [Pg.117]

A special category of ethers are trimethylsilyl ethers. Trimethylsilyl ethers of primary alcohols, on treatment with Jones reagent, give acids [590]. On treatment with A-bromosuccinimide under irradiation, trimethylsilyl ethers yield esters [744]. Secondary alkyl trimethylsilyl ethers are converted into ketones by oxidation with both reagents [590, 744, 981]. Oxidation with Jones reagent is regiospecific the 2-ferf-butyldimethylsilyl 11-Krf-butyldiphenylsilyl ether of 2,11-dodecanediol is oxidized only in the sterically less hindered position [590]. Trimethylsilyl ethers of tertiary alcohols are degraded by periodic acid to carboxylic acids with shorter chains [755] (equations 336-339). [Pg.172]


See other pages where Jones reagent ether is mentioned: [Pg.378]    [Pg.128]    [Pg.602]    [Pg.1526]    [Pg.439]    [Pg.5]    [Pg.255]    [Pg.41]    [Pg.511]    [Pg.368]    [Pg.752]    [Pg.36]    [Pg.327]    [Pg.237]    [Pg.201]    [Pg.21]    [Pg.194]    [Pg.196]    [Pg.196]    [Pg.65]    [Pg.318]    [Pg.335]    [Pg.111]    [Pg.130]    [Pg.161]    [Pg.240]    [Pg.240]    [Pg.71]    [Pg.193]    [Pg.327]   
See also in sourсe #XX -- [ Pg.6 , Pg.55 ]




SEARCH



Ethers, benzyl Jones reagent

Silyl ethers Jones reagent

© 2024 chempedia.info