Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Issues kinetics

Wyszkowska J. Kinetics of growth of the austenite grain Issued by IMP 1971,... [Pg.24]

A kinetics text with a strong theoreticai bent that overviews transient kinetic methods and discusses data anaiysis issues such as error propagation and sensitivity anaiysis. [Pg.2971]

Until now we have been discussing the kinetics of catalyzed reactions. Losses due to volatility and side reactions also raise questions as to the validity of assuming a constant concentration of catalyst. Of course, one way of avoiding this issue is to omit an outside catalyst reactions involving carboxylic acids can be catalyzed by these compounds themselves. Experiments conducted under these conditions are informative in their own right and not merely as means of eliminating errors in the catalyzed case. As noted in connection with the discussion of reaction (5.G), the intermediate is stabilized by coordination with a proton from the catalyst. In the case of autoprotolysis by the carboxylic acid reactant, the rate-determining step is probably the slow reaction of intermediate [1] ... [Pg.288]

Surface vs Solution Reactions, Anotliei issue of debate in pliotocatalyzed mineialization of oiganic substrates is whether the initial oxidation occurs on the photocatalyst s surface or in solution. Kinetic data of photooxidations and photoreductions have often been fitted to the simple... [Pg.404]

The energy which drives the fragmentation process (elastic plus kinetic) is determined by the dynamic loading conditions and does not directly depend on the properties of the material at issue. The fragmentation energy, on the other hand, is an intimate property of the material and can depend in a complex way on the thermal and dynamic conditions at spall, as well as on the deformation history of the material leading to spall. [Pg.286]

Gill, W.N., Garside, J. and Berty, J. M., Editors, 1989, Special Issue on Kinetic Model Development, Chem. Eng, Comm. 76. [Pg.4]

New materials also emerged. Nylon, developed brilliantly by W. H. Carothers and his team of research workers for Du Pont as a fibre in the mid-1930s, was first used as a moulding material in 1941. Also in 1941 a patent taken out by Kinetic Chemical Inc. described how R. J. Plunkett had first discovered polytetrafluoroethylene. This happened when, on one occasion, it was found that on opening the valve of a supposedly full cylinder of the gas tetrafluoroethylene no gas issued out. On subsequently cutting up the cylinder it was found that a white solid, polytetrafluoroethylene (PTFE), had been deposited on the inner walls of the cylinder. The process was developed by Du Pont and, in 1943, a pilot plant to produce their product Teflon came on stream. [Pg.7]

Kinetics of the reaction of p-nitrochlorobenzene with the sodium enolate of ethyl cyanoacetate are consistent with this mechanism. Also, radical scavengers have no effect on the reaction, contrary to what would be expected for a chain mechanism in which aryl radicals would need to encounter the enolate in a propagation step. The reactant, /i-nitrophenyl chloride, however, is one which might also react by the addition-elimination mechanism, and the postulated mechanism is essentially the stepwise electron-transfer version of this mechanism. The issue then becomes the question of whether the postulated radical pair is a distinct intermediate. [Pg.732]

Wet-air oxidation (also called liquid-phase thermal oxidation) is not a new technology it has been around for over forty years and has already demonstrated its great potential in wastewater treatment facilities. Despite this, there are some very important issues that remain to be addressed before a wet oxidation process can be scaled-up the kinetics of oxidation of many important hazardous compounds... [Pg.560]

The kinetic properties of chemical compounds include their absorption and distribution in the body, theit biotransformation to more soluble forms through metabolic processes in the liver and other metabolic organs, and the excretion of the metabolites in the urine, the bile, the exhaled air, and in the saliva. An important issue in toxicokinetics deals with the formation of reactive toxic intermediates during phase I metabolic reactions (see. Section 5.3.3). [Pg.263]

The overall reaction stoichiometry having been established by conventional methods, the first task of chemical kinetics is essentially the qualitative one of establishing the kinetic scheme in other words, the overall reaction is to be decomposed into its elementary reactions. This is not a trivial problem, nor is there a general solution to it. Much of Chapter 3 deals with this issue. At this point it is sufficient to note that evidence of the presence of an intermediate is often critical to an efficient solution. Modem analytical techniques have greatly assisted in the detection of reactive intermediates. A nice example is provided by a study of the pyridine-catalyzed hydrolysis of acetic anhydride. Other kinetic evidence supported the existence of an intermediate, presumably the acetylpyridinium ion, in this reaction, but it had not been detected directly. Fersht and Jencks observed (on a time scale of tenths of a second) the rise and then fall in absorbance of a solution of acetic anhydride upon treatment with pyridine. This requires that the overall reaction be composed of at least two steps, and the accepted kinetic scheme is as follows. [Pg.7]

The standard state chosen for the calculation of controls its magnitude and even its sign. The standard state is established when the concentration scale is selected. For most solution kinetic work the molar concentration scale is used, so A values reported by different workers are usually comparable. Nevertheless, an important chemical question is implied Because the sign of AS may depend upon the concentration scale used for the evaluation of the rate constant, which concentration scale should be used when A is to serve as a mechanistic criterion The same question appears in studies of equilibria. The answer (if there is a single answer) is not known, though some analyses of the problem have been made. Further discussion of this issue is given in Section 6.1. [Pg.220]

The kinetic requirements for a successful application of this concept are readily understandable. The primary issue is the rate at which the electroactive species can reach the matrix/reactant interfaces. The critical parameter is the chemical diffusion coefficient of the electroactive species in the matrix phase. This can be determined by various techniques, as discussed above. [Pg.375]

Also, a specific analysis for the intermediate itself may be developed. It may be detectable at levels below those discernible as discrepancies in the mass balance. If the concentration of. the intermediate is very low, Eqs. (1-5) and (1-6) hold. If not, then reactant consumption and product buildup occur at different rates. Such complications will be considered in Chapters 3 and 4. Most complexities in kinetics involve reactive intermediates. Relatively few reactions of significance occur in a single step, so issues concerning intermediates will recur throughout this book. [Pg.4]

To conclude this chapter, note that some of the techniques described are capable not only of providing data about the overall kinetics but also begin to address the question of the reactivity of intermediates. This is an issue to which we shall return in Chapters 4 and 5. [Pg.64]


See other pages where Issues kinetics is mentioned: [Pg.368]    [Pg.14]    [Pg.368]    [Pg.14]    [Pg.669]    [Pg.2660]    [Pg.33]    [Pg.87]    [Pg.342]    [Pg.443]    [Pg.510]    [Pg.455]    [Pg.411]    [Pg.504]    [Pg.180]    [Pg.83]    [Pg.537]    [Pg.188]    [Pg.117]    [Pg.2313]    [Pg.209]    [Pg.209]    [Pg.209]    [Pg.115]    [Pg.122]    [Pg.122]    [Pg.315]    [Pg.328]    [Pg.479]    [Pg.485]    [Pg.297]    [Pg.262]    [Pg.1029]    [Pg.82]    [Pg.235]    [Pg.128]    [Pg.167]    [Pg.132]   
See also in sourсe #XX -- [ Pg.24 , Pg.26 ]




SEARCH



© 2024 chempedia.info