Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxy-isoxazoles

D,L-a-ammo-3-hydroxy-5-methyl-4-isoxazole-4-propiomc acid [77521-29-0]... [Pg.340]

Substituted isoxazoles, pyrazoles and isothiazoles can exist in two tautomeric forms (139, 140 Z = 0, N or S Table 37). Amino compounds exist as such as expected, and so do the hydroxy compounds under most conditions. The stability of the OH forms of these 3-hydroxy-l,2-azoles is explained by the weakened basicity of the ring nitrogen atom in the 2-position due to the adjacent heteroatom at the 1-position and the oxygen substituent at the 3-position. This concentration of electron-withdrawing groups near the basic nitrogen atom causes these compounds to exist mainly in the OH form. [Pg.36]

Pyrazoles, isoxazoles and isothiazoles with a hydroxyl group in the 3-position (491 Z = NR, O, S) could isomerize to 3-azolinones (492). However, these compounds behave as true hydroxy derivatives and show phenolic properties. They give an intense violet color with iron(III) chloride and form a salt (493) with sodium hydroxide which can be O-alkylated by alkyl halides (to give 494 R = alkyl) and acylated by acid chlorides (to give 494 R = acyl). [Pg.100]

The 4- and 5-hydroxy-imidazoles, -oxazoles and -thiazoles (499, 501) and 4-hydroxy-pyrazoles, -isoxazoles and -isothiazoles (503) cannot tautomerize to an aromatic carbonyl form. However, tautomerism similar to that which occurs in hydroxy-furans, -thiophenes and -pyrroles is possible (499 500 503 504 501 502), as well as a zwitterionic... [Pg.101]

Polarization and dipole moment studies for alkyl-, aryl-, carbonyl- hydroxy- (keto-) and amino-isoxazoles have been compiled and likewise support the low electron nature of the ring 63AHC(2)365, 62HC(l7)l,p. 177). More recent studies predict the order of electrophilic substitution to be 5>4> 3 on frontier electron density values of 0.7831, 0.3721 and 0.0659, respectively 7lPMH(4)237,pp.245,247). This contrasts with earlier reports of 4>5>3 on density values of —0.09, -t-0.14 and -t-0.18 in that order 63AHC(2 365). [Pg.4]

With 3- and 4-substituted isoxazoles the tautomeric form normally present is the XH tautomer, (13 X = O) and (14 X = O, N) respectively. However, other influences need to be considered as in cycloserine (IS), which exists as a zwitterion, as does 5-amino-3-hydroxy-isoxazole (16). [Pg.11]

Although isoxazoles are comparatively weak electron donors, complexes with numerous metal ions, notable metal(II) ions, have been reported. The ligands include isoxazole and its methyl, phenyl, amino and hydroxy derivatives. They are listed with references in Table 5. [Pg.20]

SnCl2 reduction produced the 4-hydrazinoisoxazole (243). In ethanol the diazonium salt reacted with the 4-aminoisoxazole to produce the linear triazine (244) (Scheme 85). Diazoisoxazoles can also be treated with KI or H20/urea to produce the 4-iodo or 4-hydroxy derivatives (63AHC(2)365). These Sandmeyer reactions have been extended to a variety of isoxazole systems (77JMC934, 63AHC(2)365). [Pg.55]

In 1888 Claisen (1888CB1149) first recognized a general synthesis of isoxazoles (283) by the condensation-cyclization of 1,3-diketones (280) with hydroxylamine. It is now generally accepted that the monoxime (281) of the 1,3-diketone and the subsequent 5-hydroxy-isoxazoline (282) are the intermediate products of the reaction. The isolation of the monoxime (281) and 5-hydroxyisoxazoline (282), which were both readily converted into the isoxazole (283) by treatment with acid or base, has been reported (62HC(17)l). [Pg.61]

Cyclopent-2-en-l-one, 2-hydroxy-3-methyl-synthesis, 3, 693 Cyclopentenone, 4-methoxy-formation, 1, 423 Cyclopenthiazide as diuretic, 1, 174 Cyclopent[2,3-d]isoxazol-4-one structure, 6, 975 Cyclophane conformation, 2, 115 photoelectron spectroscopy, 2, 140 [2,2]Cyclophane conformation, 2, 115 Cyclophanes nomenclature, 1, 27 Cyclophosphamide as pharmaceutical, 1, 157 reviews, 1, 496 Cyclopiloselloidin synthesis, 3, 743 Cyclopolymerization heterocycle-forming, 1, 292-293 6H-Cyclopropa[5a,6a]pyrazolo[l,5-a]pyrimidine pyrazoles from, 5, 285 Cydopropabenzopyran synthesis, 3, 700 Cyclopropachromenes synthesis, 3, 671 Cyclopropa[c]dnnolines synthesis, 7, 597 Cyclopropanation by carbenes... [Pg.591]

Isoxazole, 3-hydroxy-5-phenyl-photolysis, 6, 13 Isoxazole, 5-(o-hydroxyphenyl)-synthesis, 6, 79 Isoxazole, hydroxystyryl-applications, 6, 128 Isoxazole, 4-iodo-... [Pg.687]

Isoxazole-3,5-dicarboxyIic acid, 4-hydroxy-diethyl ester synthesis, 6, 85, 87 synthesis, 6, 66... [Pg.688]

Two polymorphic forms of 3- 2-[4-(6-fluorobenzisoxazol-3-yl)-l,2,3,6-tetrahydropyridin-l-yl]ethyl -2-methyl-6,7,8,9-tetrahydro-4//-pyrido[l,2-n] pyrimidin-4-one (137 R = H) were prepared (99MIP1). Racemic 9-hydroxy-2-methyl-3- 2-[4-(6-fluorobenzo[r/ isoxazol-3-yl)-l,2,3,6-tetrahydro-l-pyridyl] ethyl -6,7,8,9-tetrahydro-4//-pyrido[l, 2-n]pyrimidin-4-one was resolved into its (R)- and (5)-isomers (OOMIPIO). [Pg.233]

Recently a definitive study of several isoxazol-5-ones using infrared and ultraviolet spectroscopy (Table I) has shown that the balance between the various tautomers is a delicate one and that all three of the structural types can predominate depending upon the nature of the substituents and the conditions of the experiment. However, the hydroxy form is only found when it is stabilized by chelation (i.e., a carbonyl substituent in the 4-position). The other compounds exist in the CH form in nonpolar media increasing polarity of the solvent stabilizes increasing amounts of the more polar NH forms. [Pg.38]

Several reactions giving rise to hydroxy- and amino-isoxazoles have also been investigated. Thus the reaction of alkoxymethylene-cyanoacetates and hydroxylamine leading to 5-amino- or 5-hydroxy-isoxazoles proved to be rather useful.It is of particular interest that, by changing the reaction conditions, Bauer and Nambury succeeded in obtaining isomeric aminoisoxazolones (24 25 26). It is also possible to prepare isoxazol-3-ones from some /S-ketoesters. ... [Pg.371]

The application of spectroscopic methods to the study of tautom-erism proved especially fruitful. The tautomerism of hydroxy and amino derivatives of isoxazole is of great interest to the chemistry of isoxazole this subject, as well as the tautomerism of functional derivatives of other five-membered heterocycles, has been reviewed by Katritzky and Lagowski. We shall therefore only... [Pg.380]

In 1909, Thiele and Landers reported the synthesis of p- (3-methoxy-isoxazol-5-yl)-propionic acid (77), from the corresponding chloride or bromide (76). In 1961, a similar reaction was reported for 3-chloro-5-arylisoxazoles, enabling the synthesis of 3-hydroxy-5-phenyl-... [Pg.390]

Carbethoxy-4-hydrOxy-2-methyl-2H-1 -benzothiazine-1,1-dioxide 3-Amino-5-methyl-isoxazole... [Pg.854]

Both of the 4,5-tran.v-diaslereomers of 4,5-dihydro-4-(4-methoxyphenyl)-5-methyl-3-[(7 )-(4-methylphenylsulfinyl)methyl]isoxazole (24) show excellent stereoselection in reactions with aldehydes. Despite the bulky substituents at the 4,5-dihydroisoxazole nucleus, the stereochemical outcome of the reaction is controlled by the sulfoxide stereogenicity. The pairs of 4,5-dihydro-3-(2-hydroxyalkyl)-4-(4-methoxyphenyl)-5-methylisoxazoles, obtained by desulfurization of the corresponding aldol adducts, have the same configuration at the hydroxy-substituted carbon (C-2 ) and opposite configuration in the 4- and 5-positions of the dihydroisoxazole ring24. [Pg.617]

Aluminum oxide catalyzed addition of ethyl nitroacetate to racemic 2,3-cpoxy aldehydes 7 affords substituted 4,5-dihydroisoxazole 2-oxides through a regio- and stereospecific tandem nitroaldol cyclization process. High diastereoselectivities are observed in the reaction of cis-epoxyaldehydes to yield the ethyl, vi7 -4.5-dihydro-4-hydroxy-5-( I -hydroxyalkyl)-3-isoxazole-carboxylate 2-oxides, with tram configuration at the ring positions, whereas reactions of trans-and 3,3-disubstituted 2,3-epoxyaldehydes proceed with lower selectivities28. [Pg.633]

Nofe. AMPA = amino-3-hydroxy-5--methyl-4-isoxazole propionate GABA=y-aminobutyric acid. [Pg.196]

AMPAR. (a-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor a non-NMDA-type ionotropic transmembrane receptor for glutamate that mediates fast synaptic transmission in the central nervous system. [Pg.249]

Non-NMDA ionotropic glutamate receptors (the majority sodium channel containing) can be subdivided into a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) (comprising cloned subunits GluRl ) and kainate (GluR5-7, KAl-2) preferring receptors, with native receptors most likely to comprise either homo- or heteromeric pentamers of these subunits. [Pg.214]

Abbreviations N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), L(+)-2 amino-3-phosphonopropionic acid (L-AP3), 6-cyano-7-nitroqninoxaline (CNQ5Q, 2,3-dihydroxy-6-nitro-7-sulfamyl-benzo-f-quinoxaline (NBQX), 3-(2-carboxypiperazin-4-yl)-propyl-l-phosphonic acid (CPP), 7 Chlorokynnreic... [Pg.220]


See other pages where Hydroxy-isoxazoles is mentioned: [Pg.687]    [Pg.687]    [Pg.687]    [Pg.687]    [Pg.687]    [Pg.687]    [Pg.687]    [Pg.687]    [Pg.30]    [Pg.36]    [Pg.100]    [Pg.4]    [Pg.4]    [Pg.13]    [Pg.40]    [Pg.129]    [Pg.686]    [Pg.28]    [Pg.38]    [Pg.86]    [Pg.167]    [Pg.612]    [Pg.616]    [Pg.616]    [Pg.678]    [Pg.861]    [Pg.151]    [Pg.158]    [Pg.2112]    [Pg.2394]   


SEARCH



5- Hydroxy-3-methyl isoxazole

A-Amino-3-hydroxy-5-methyl-4-isoxazole propionate

A-amino-3-hydroxy-5-methyl-4-isoxazole

AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole

Hydroxy-5-aminomethyl-isoxazole

Isoxazoles 3-hydroxy— from

Isoxazoles hydroxy-, preparation

Isoxazoles hydroxy-, tautomerism

Isoxazoles pyrimidines, 4-hydroxy

© 2024 chempedia.info