Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotopes Kinetic isotope effect

The elevated primary isotope kinetic isotope effect (KIE)... [Pg.34]

It is clear, then, that the measurement of primary kinetic isotope effects will not give a wholly unambiguous clue to mechanism in the absence of other evidence. Nevertheless, the absence of a kinetic isotope effect is most easily understood in terms of the /S 2 mechanism... [Pg.110]

Melander first sought for a kinetic isotope effect in aromatic nitration he nitrated tritiobenzene, and several other compounds, in mixed acid and found the tritium to be replaced at the same rate as protium (table 6.1). Whilst the result shows only that the hydrogen is not appreciably loosened in the transition state of the rate-determining step, it is most easily understood in terms of the S 2 mechanism with... [Pg.110]

One way in which the step of the reaction in which the proton is lost might be slowed down, and perhaps made kinetically important (with i), would be to carry out nitration at high acidities. Nitration of pentadeuteronitrobenzene in 97-4% sulphuric acid failed to reveal such an effect. In fact, nitrations under a variety of conditions fail to show a kinetic isotope effect. [Pg.112]

The cases of pentamethylbenzene and anthracene reacting with nitronium tetrafluoroborate in sulpholan were mentioned above. Each compound forms a stable intermediate very rapidly, and the intermediate then decomposes slowly. It seems that here we have cases where the first stage of the two-step process is very rapid (reaction may even be occurring upon encounter), but the second stages are slow either because of steric factors or because of the feeble basicity of the solvent. The course of the subsequent slow decomposition of the intermediate from pentamethylbenzene is not yet fully understood, but it gives only a poor yield of pentamethylnitrobenzene. The intermediate from anthracene decomposes at a measurable speed to 9-nitroanthracene and the observations are compatible with a two-step mechanism in which k i k E and i[N02" ] > / i. There is a kinetic isotope effect (table 6.1), its value for the reaction in acetonitrile being near to the... [Pg.115]

By protodetritiation of the thiazolium salt (152) and of 2 tritiothiamine (153) Kemp and O Brien (432) measured a kinetic isotope effect, of 2.7 for (152). They evaluated the rate of protonation of the corresponding yiides and found that the enzyme-mediated reaction of thiamine with pyruvate is at least 10 times faster than the maximum rate possible with 152. The scale of this rate ratio establishes the presence within the enzyme of a higher concentration of thiamine ylide than can be realized in water. Thus a major role of the enzyme might be to change the relative thermodynamic stabilities of thiamine and its ylide (432). [Pg.118]

Kinetic isotope effects are an important factor in the biology of deuterium. Isotopic fractionation of hydrogen and deuterium in plants occurs in photosynthesis. The lighter isotope is preferentially incorporated from water into carbohydrates and tipids formed by photosynthesis. Hydrogen isotopic fractionation has thus become a valuable tool in the elucidation of plant biosynthetic pathways (42,43). [Pg.6]

In CLTST there appears a kinetic isotope effect owing to the difference in partition functions in the initial state [see eq.(2.12)], and at 2Pf < o > I5... [Pg.31]

A special type of substituent effect which has proved veiy valuable in the study of reaction mechanisms is the replacement of an atom by one of its isotopes. Isotopic substitution most often involves replacing protium by deuterium (or tritium) but is applicable to nuclei other than hydrogen. The quantitative differences are largest, however, for hydrogen, because its isotopes have the largest relative mass differences. Isotopic substitution usually has no effect on the qualitative chemical reactivity of the substrate, but often has an easily measured effect on the rate at which reaction occurs. Let us consider how this modification of the rate arises. Initially, the discussion will concern primary kinetic isotope effects, those in which a bond to the isotopically substituted atom is broken in the rate-determining step. We will use C—H bonds as the specific topic of discussion, but the same concepts apply for other elements. [Pg.222]

Fig. 4.9. DifiBoing zero-point energies ofprotium- and deuterium-substituted molecules as the cause of primary kinetic isotope effects. Fig. 4.9. DifiBoing zero-point energies ofprotium- and deuterium-substituted molecules as the cause of primary kinetic isotope effects.
Scheme 4.2. Some Representative Kinetic Isotope Effects... Scheme 4.2. Some Representative Kinetic Isotope Effects...
A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

The distribution of a-bromoketones formed in the reaction of acetylcyclopentane with bromine was studied as a function of deuterium substitution. On the basis of the data given below, calculate the primaiy kinetic isotope effect for enolization of... [Pg.448]

Consider the kinetic isotope effect that would be observed in the reaction of semicarbazide with benzaldehyde ... [Pg.506]

Table 10.6. Kinetic Isotope Effects in Some Electrophilic Aromatic Substitution Reactions... Table 10.6. Kinetic Isotope Effects in Some Electrophilic Aromatic Substitution Reactions...
A substantial body of data, including reaction kinetics, isotope effects, and structure-reactivity relationships, has permitted a thorough understanding of the steps in aromatic nitration. As anticipated from the general mechanism for electrophilic substitution, there are three distinct steps ... [Pg.571]

Bromination has been shown not to exhibit a primary kinetic isotope effect in the case of benzene, bromobenzene, toluene, or methoxybenzene. There are several examples of substrates which do show significant isotope effects, including substituted anisoles, JV,iV-dimethylanilines, and 1,3,5-trialkylbenzenes. The observation of isotope effects in highly substituted systems seems to be the result of steric factors that can operate in two ways. There may be resistance to the bromine taking up a position coplanar with adjacent substituents in the aromatization step. This would favor return of the ff-complex to reactants. In addition, the steric bulk of several substituents may hinder solvent or other base from assisting in the proton removal. Either factor would allow deprotonation to become rate-controlling. [Pg.578]

Friedel-Crafts acylation sometimes shows a modest kinetic isotope effect. This observation suggests that the proton removal is not much faster than the formation of the (j-complex and that the formation of the n-complex may be reversible under some conditions. [Pg.586]

When one of the ortho hydrogens is replaced by deuterium, the rate drops from 1.53 X 10 " s to 1.38 X lO s. What is the kinetic isotope effect The product from such a reaction contains 60% of the original deuterium. Give a mechanism for this reaction that is consistent with both the kinetic isotope effect and the deuterium retention data. [Pg.599]

Indicate mechanisms that would account for the formation of each product. Show how the isotopic substitution could cause a change in product composition. Does your mechanism predict that the isotopic substitution would give rise to a primary or secondary deuterium kinetic isotope effect Calculate the magnitude of the kinetic isotope effect from the data given. [Pg.602]

Consider a reactant molecule in which one atom is replaced by its isotope, for example, protium (H) by deuterium (D) or tritium (T), C by C, etc. The only change that has been made is in the mass of the nucleus, so that to a very good approximation the electronic structures of the two molecules are the same. This means that reaction will take place on the same potential energy surface for both molecules. Nevertheless, isotopic substitution can result in a rate change as a consequence of quantum effects. A rate change resulting from an isotopic substitution is called a kinetic isotope effect. Such effects can provide valuable insights into reaction mechanism. [Pg.292]

We now carry the argument over to transition state theory. Suppose that in the transition state the bond has been completely broken then the foregoing argument applies. No real transition state will exist with the bond completely broken—this does not occur until the product state—so we are considering a limiting case. With this realization of the very approximate nature of the argument, we make estimates of the maximum kinetic isotope effect. We write the Arrhenius equation for the R-H and R-D reactions... [Pg.294]

A kinetic isotope effect that is a result of the breaking of the bond to the isotopic atom is called a primary kinetic isotope effect. Equation (6-88) is, therefore, a very simple and approximate relationship for the maximum primary kinetic isotope effect in a reaction in which only bond cleavage occurs. Table 6-5 shows the results obtained when typical vibrational frequencies are used in Eq. (6-88). Evidently the maximum isotope effect is predicted to be very substantial. [Pg.295]

Table 6-5. Calculated Hydrogen/Deuterium Primary Kinetic Isotope Effects" ... Table 6-5. Calculated Hydrogen/Deuterium Primary Kinetic Isotope Effects" ...
A more rigorous theory of kinetic isotope effects begins with the transition state equation k = (kTlh)K. Writing this for and ito leads to... [Pg.296]

B synchronously moving away from and toward H the H atom does not move (if A and B are of equal mass). If H does not move in a vibration, its replacement with D will not alter (he vibrational frequency. Therefore, there will be no zero-point energy difference between the H and D transition states, so the difference in activation energies is equal to the difference in initial state zero-point energies, just as calculated with Eq. (6-88). The kinetic isotope effect will therefore have its maximal value for this location of the proton in the transition state. [Pg.297]

If the proton is not equidistant between A and B, it will undergo some movement in the symmetric stretching vibration. Isotopic substitution will, therefore, result in a change in transition state vibrational frequency, with the result that there will be a zero-point energy difference in the transition state. This will reduce the kinetic isotope effect below its maximal possible value. For this type of reaction, therefore, should be a maximum when the proton is midway between A and B in the transition state and should decrease as H lies closer to A or to B. [Pg.297]


See other pages where Isotopes Kinetic isotope effect is mentioned: [Pg.139]    [Pg.6]    [Pg.94]    [Pg.109]    [Pg.110]    [Pg.110]    [Pg.110]    [Pg.114]    [Pg.115]    [Pg.116]    [Pg.116]    [Pg.57]    [Pg.5]    [Pg.6]    [Pg.224]    [Pg.224]    [Pg.566]    [Pg.625]    [Pg.632]    [Pg.53]    [Pg.272]    [Pg.292]    [Pg.297]   


SEARCH



Isotope kinetic

Isotopic kinetic

Kinetic isotope effects

Kinetics isotope effect

© 2024 chempedia.info