Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerizations polymerization isomerism

Ionization isomerism Hydration isomerism Coordination isomerism Linkage isomerism Polymerization isomerism... [Pg.548]

In fact, Werner played such a central and almost monopolistic role in coordination chemistry that his name is virtually synonymous with the field. Even today, almost 75 years after his death in 1919, coordination compounds, particularly metal-ammines, are still colloquially called Werner complexes. The coordination theory not only provided a logical explanation for known "molecular compounds, but also predicted series of unknown compounds, whose eventual discovery lent further weight to Werner s controversial ideas. He showed how ammonia could be replaced by water or other groups, and he demonstrated the existence of transition series between ammines, double salts, and hydrates. Werner recognized and named many types of inorganic isomerism such as coordination isomerism, polymerization isomerism, ionization isomerism, hydrate isomerism, salt isomerism, coordination position isomerism, and valence isomerism. He also postulated explanations for polynuclear complexes, hydrated metal ions, hydrolysis, and acids and bases. His view of the two types of chemical... [Pg.13]

COT is prepared by the polymerization of ethyne at moderate temperature and pressure in the presence of nickel salts. The molecule is non-planar and behaves as a typical cyclic olefin, having no aromatic properties. It may be catalytically hydrogenated to cyclo-octene, but with Zn and dil. sulphuric acid gives 1,3,6-cyclooclairiene. It reacts with maleic anhydride to give an adduct, m.p. 166 C, derived from the isomeric structure bicyclo-4,2,0-octa-2,4,7-triene(I) ... [Pg.122]

This isomerization, which must proceed through a 1,2,3-trienylanine, is not "contra-thermodynamic", since with a catalytic amount of potassium tert.-butoxide the same result is obtained. Enyne ethers, H2C=CH-CsC-0R, undergo a similar conversion into HCeC-CH=CH-OR upon interaction with alkali metal amides in liquid NH3, followed by hydrolysis . Enyne sulphides, H2C=CH-CsC-SR, and the hydrocarbons H2C=CH-CsC-R (R = or phenyl) give only tars or polymeric products under... [Pg.89]

Our purpose in this introduction is not to trace the history of polymer chemistry beyond the sketchy version above, instead, the objective is to introduce the concept of polymer chains which is the cornerstone of all polymer chemistry. In the next few sections we shall introduce some of the categories of chains, some of the reactions that produce them, and some aspects of isomerism which multiply their possibilities. A common feature of all of the synthetic polymerization reactions is the random nature of the polymerization steps. Likewise, the twists and turns the molecule can undergo along the backbone of the chain produce shapes which are only describable as averages. As a consequence of these considerations, another important part of this chapter is an introduction to some of the statistical concepts which also play a central role in polymer chemistry. [Pg.2]

Positional isomerism is conveniently illustrated by considering the polymerization of a vinyl monomer. In such a reaction, the adding monomer may become attached to the growing chain in either of two orientations ... [Pg.23]

The final type of isomerism we take up in this section involves various possible structures which result from the polymerization of 1,3-dienes. Three important monomers of this type are 1,3-butadiene, 1,3-isoprene, and 1,3-chloroprene, structures [X]-[XII], respectively ... [Pg.26]

The polymerization of j3-carboxymethyl caprolactam has been observed to consist of initial isomerization via a second-order kinetic process followed by condensation of the isomer to polymer ... [Pg.339]

In spite of the assortment of things discussed in this chapter, there are also a variety of topics that could be included but which are not owing to space limitations. We do not discuss copolymers formed by the step-growth mechanism, for example, or the use of Ziegler-Natta catalysts to regulate geometrical isomerism in, say, butadiene polymerization. Some other important omissions are noted in passing in the body of the chapter. [Pg.424]

Complications arising from other types of isomerism. Positional and geometrical isomerism, also described in Sec. 1.6, will be excluded for simplicity. In actual polymers these are not always so easily ignored. Polymerization of 1,2-disubstituted ethylenes. Since these introduce two different asymmetric carbons into the polymer backbone (second substituent Y), they have the potential to display ditacticity. Our attention to these is limited to the illustration of some terminology which is derived from carbohydrate nomenclature (structures [IX]-[XII]) ... [Pg.472]

Fluorosulfuric acid [7789-21-17, HSO F, is a colodess-to-light yellow liquid that fumes strongly in moist air and has a sharp odor. It may be regarded as a mixed anhydride of sulfuric and hydrofluoric acids. Fluorosulfuric acid was first identified and characterized in 1892 (1). It is a strong acid and is employed as a catalyst and chemical reagent in a number of chemical processes, such as alkylation (qv), acylation, polymerization, sulfonation, isomerization, and production of organic fluorosulfates (see Friedel-CRAFTSreactions). [Pg.248]

A process of polymerization of isomerized a-pinene or turpentine with vinylbenzenes has been disclosed (105). a-Pinene or turpentine is isomerized by flash pyrolysis at 518 5° C in a hot tube reactor to yield a mixture of predominantly dipentene and i7t-alloocimene... [Pg.357]

Higher a-olefins can also be polymerized with cationic initiators to fiquid oligomeric materials with isomerized stmctures. These fiquids are manufactured commercially and used as lubricating oils. [Pg.425]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

A number of smaller but nevertheless important apphcations in which activated alumina is used as the catalyst substrate include alcohol dehydration, olefin isomerization, hydrogenation, oxidation, and polymerization (43). [Pg.156]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]

Uses ndReactions. a-Pinene (8) is useful for synthesizing a wide variety of terpenoids. Hydration to pine oil, acid-catalyzed isomerization to camphene, thermal isomerization to ocimene and aHoocimene, and polymerization to terpene resins are some of its direct uses. Manufacture of linalool, nerol, and geraniol has become an economically important use of a-pinene. [Pg.411]

Uses ndReactions. Some of the principal uses for P-pinene are for manufacturing terpene resins and for thermal isomerization (pyrolysis) to myrcene. The resins are made by Lewis acid (usuaUy AlCl ) polymerization of P-pinene, either as a homopolymer or as a copolymer with other terpenes such as limonene. P-Pinene polymerizes much easier than a-pinene and the resins are usehil in pressure-sensitive adhesives, hot-melt adhesives and coatings, and elastomeric sealants. One of the first syntheses of a new fragrance chemical from turpentine sources used formaldehyde with P-pinene in a Prins reaction to produce the alcohol, Nopol (26) (59). [Pg.413]

Carene has also been isomerized over an S-alumina catalyst to a 50 50 mixture of dipentene (15) and carvestrene (30). The cmde mixture can be readily polymerized to a terpene resin or copolymerized with piperjiene (63,64). [Pg.414]

Myrcene Manufacture. An important commercial source for mycene is its manufacture by pyrolysis of p-piaene at 550—600°C (87). The thermal isomerization produces a mixture of about 75—77 wt % myrcene, 9% limonene, a small amount of T -limonene [499-97-8] and some decomposition products and dimers. The cmde mixture is usually used without purification for the production of the important alcohols nerol and geraniol. Myrcene may be purified by distillation but every precaution must be taken to prevent polymerization. The use of inhibitors and distillation at reduced pressures and moderate temperatures is recommended. Storage or shipment of myrcene in any purity should also include the addition of a polymerization inhibitor. [Pg.416]

Oxidation of aHoocimene in the presence of a catalyst produces a polymeric peroxide, which can be thermally isomerized to produce aHoocimene diepoxide [3765-28 ] (56) in 70—75% yield (99). The diepoxide has been used in the manufacture of resins and as an acid scavenger for halogenated solvents (100). [Pg.418]

Zirconium—ally complexes also have catalytic properties. Tetraally zirconium [12090-34-5] on a siUca substrate catalyzes ethylene polymerization (265). Supported on sihca, ZrR (R = allyl or neopentyl) catalyzes olefin isomerization (266). [Pg.441]

An extremely wide variety of catalysts, Lewis acids, Brmnsted acids, metal oxides, molecular sieves, dispersed sodium and potassium, and light, are effective (Table 5). Generally, acidic catalysts are required for skeletal isomerization and reaction is accompanied by polymerization, cracking, and hydrogen transfer, typical of carbenium ion iatermediates. Double-bond shift is accompHshed with high selectivity by the basic and metallic catalysts. [Pg.365]

Elastomers. Ethylene—propylene terpolymer (diene monomer) elastomers (EPDM) use a variety of third monomers during polymerization (see Elastomers, ethyiene-propylene-diene rubber). Ethyhdenenorbomene (ENB) is the most important of these monomers and requires dicyclopentadiene as a precursor. ENB is synthesized in a two step preparation, ie, a Diels-Alder reaction of CPD (via cracking of DCPD) with butadiene to yield 5-vinylbicyclo[2.2.1]-hept-2-ene [3048-64-4] (7) where the external double bond is then isomerized catalyticaHy toward the ring yielding 5-ethyhdenebicyclo[2.2.1]-hept-2-ene [16219-75-3] (ENB) (8) (60). [Pg.434]

Functional dyes (1) of many types are important photochemical sensitizers for oxidation, polymerization, (polymer) degradation, isomerization, and photodynamic therapy. Often, dye stmctures from several classes of materials can fulfiH a similar technological need, and reviewing several dye stmctures... [Pg.434]

Polymerization temperature, °C trans 1,4 Addition inverted cis 1,2 Addition Isomerized 1,2 3,4 Addition... [Pg.540]


See other pages where Isomerizations polymerization isomerism is mentioned: [Pg.549]    [Pg.70]    [Pg.197]    [Pg.440]    [Pg.133]    [Pg.98]    [Pg.422]    [Pg.128]    [Pg.316]    [Pg.405]    [Pg.551]    [Pg.151]    [Pg.453]    [Pg.477]    [Pg.330]    [Pg.116]    [Pg.293]    [Pg.350]    [Pg.519]    [Pg.59]    [Pg.247]    [Pg.81]    [Pg.439]    [Pg.240]    [Pg.170]    [Pg.37]    [Pg.23]   
See also in sourсe #XX -- [ Pg.592 ]




SEARCH



1,3-olefins isomerization polymerization

Anionic polymerization isomeric species

Assessing the Possibility of Isomerization Preceding Polymerization

Cationic chain polymerization isomerization

Cationic isomerization polymerization

Cationic polymerization Isomeric species

Geometrical isomerism polymerization

Isomerism polymerization

Isomerism polymerization

Isomerization Polymerizations with Coordination Catalysts

Isomerization polymerization

Isomerization polymerization

Isomerization polymerization coordination

Isomerization polymerization lactams

Isomerization polymerization of 3-methyl-l-butene

Lactam, isomerization polymerization

Oxetane isomerization-polymerization

Platinum, tctraammineamminctrichloroplatinate polymerization isomerism

Platinum, tetraammineamminetrichloroplatinate polymerization isomerism

Polymerization isomerism coordination compounds

Polymerization with isomerization

Structural isomerism polymerization

Subject polymerization isomerism

© 2024 chempedia.info