Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isolation techniques headspace concentrating

Cleanup The concentration and/or isolation technique applied has a great influence on the cleanup procedure. HSA techniques such as static headspace and purge-and-trap with thermal desorption have the advantage that no further cleanup is necessary. These techniques are restricted to the analysis of volatile compounds. A high selectivity of the concentration and/or isolation technique decreases the necessity of a further cleanup procedure. By a proper selection of the extraction solvent or the sorbent, the determinands can be extracted and separated simultaneously from the majority of coextractives. Also, a derivatization procedure can increase the selectivity of the method. The following procedures can be used for cleanup. [Pg.4998]

Various sample enrichment techniques are used to isolate volatile organic compounds from mammalian secretions and excretions. The dynamic headspace stripping of volatiles from collected material with purified inert gas and trapping of the volatile compounds on a porous polymer as described by Novotny [3], have been adapted by other workers to concentrate volatiles from various mammalian secretions [4-6]. It is risky to use activated charcoal as an adsorbent in the traps that are used in these methods because of the selective adsorption of compounds with different polarities and molecular sizes on different types of activated charcoal. Due to the high catalytic activity of activated charcoal, thermal conversion can occur if thermal desorption is used to recover the trapped material from such a trap. [Pg.246]

Aroma compounds are present in minute levels in foods, often at the ppb level ( ig/liter). In order to analyze compounds at these levels, isolation and concentration techniques are needed. However, isolation of aroma compounds from a food matrix, which contains proteins, fats, and carbohydrates, is not always simple. For foods without fat, solvent extraction (unit gu) can be used. In foods containing fat, simultaneous distillation extraction (SDE see Basic Protocol 1) provides an excellent option. Concentration of headspace gases onto volatile traps allows sampling of the headspace in order to obtain sufficient material for identification of more volatile compounds. A separate protocol (see Basic Protocol 2) shows how volatile traps can be used and then desorbed thermally directly onto a GC column. For both protocols, the subsequent separation by GC and identification by appropriate detectors is described in unitgu. [Pg.1003]

For aroma extracts, the blank sample is a mixture of the solvents used in the extraction, and are concentrated in the same way as the aroma isolate. Some volatiles in aroma extracts may derive from trace impurities of the solvents. For headspace techniques, a blank run is also recommended to check impurities coming from the tubings and/or adsorbents used. [Pg.1014]

Headspace Sampling Technique. The method used a new gas chromatographic desorption - concentration - GC introduction device (D.C.I.) based on dynamic headspace analysis and available from Delsi Instruments (Paris, France). This apparatus made it possible to isolate volatiles from both solid and liquid samples (4). [Pg.347]

Solid phase micro-extraction (SPME) allows isolation and concentration of volatile components rapidly and easily without the use of a solvent. These techniques are independent of the form of the matrix liquids, solids and gases can be sampled quite readily. SPME is an equilibrium technique and accurate quantification requires that the extraction conditions be controlled carefully. Each chemical component will behave differently depending on its polarity, volatility, organic/water partition coefficient, volume of the sample and headspace, speed of agitation, pH of the solution and temperature of the sample (Harmon, 2002). The techniques involve the use of an inert fiber coated with an absorbant, which govern its properties. Volatile components are adsorbed onto a suitable SPME fiber (which are usually discriminative for a range of volatile components), desorbed in the injection chamber and separated by a suitable GC column. To use this method effectively, it is important to be familiar with the factors that influence recovery of the volatiles (Reineccius, 2002). [Pg.689]

The isolation and concentration of petroleum products can be performed in several ways. The most efficient method is passive adsorption. In this method, the sample along with a tube filled with Tenax TA adsorbent is placed in a thermostated (60-70 °C) tightly closed container, such as a glass jar, for over 10 h. Under these conditions, a balance between compounds present in the headspace of the sample and the sample adsorbed on the polymer adsorbent is established. Adsorbed compounds are subjected to thermodesorbtion then, the desorbed compounds together with the carrier gas are injected onto a GC column, where they are separated and then identified. This approach has enabled easy detection and identification of trace amounts of petroleum products. Headspace analysis with passive adsorption on Tenax TA is normally used for separation and concentration of analytes. Gas chromatography coupled with an autothermal desorber and a mass spectrometer (ATD-GC-MS) is the best technique for separation of multicomponent mixtures... [Pg.301]

Neither soxhlet extraction nor steam distillation is designed to isolate volatiles from solids for subsequent determination. Slurrying the solids in water and then applying the PaT procedure has been reported A vacuum extractor with cryogenic concentration has been applied to both fish and sediment samples for determination of volatile priority pollutants PaT, LLE, and static headspace techniques have all been applied to the determination of volatiles in sludges from municipal waste treatment plants... [Pg.100]

Before any sample can be subjected to chromatography, some type of sample preparation is required, which can be as simple as filtration or an involved solid-phase extraction protocol. Sample preparation is that activity or those activities necessary to prepare a sample for analysis. The ultimate goal of sample preparation is to provide the component of interest in solution, free from interferences, and at a concentration appropriate for detection. Sample preparation can be divided into a number of classes of activities solvent extraction, sorbent extraction and compound isolation, headspace, and membrane separations, with each of these areas further divided into techniques that apply to the category of activities. [Pg.2077]

At the present time, the two most common procedures reported in the literature for the isolation of the aromatics are headspace methods and extraction. The former will be covered in the next chapter. The purpose of this chapter is to review techniques for isolating and concentrating aromatics, which include various distillation and extraction procedures. [Pg.4]


See other pages where Isolation techniques headspace concentrating is mentioned: [Pg.106]    [Pg.42]    [Pg.43]    [Pg.102]    [Pg.103]    [Pg.182]    [Pg.138]    [Pg.405]    [Pg.213]    [Pg.110]    [Pg.17]    [Pg.754]    [Pg.1519]    [Pg.1602]    [Pg.4994]    [Pg.877]    [Pg.2862]    [Pg.7]    [Pg.439]    [Pg.160]   


SEARCH



Concentrating techniques

Concentration techniques

Headspace

Headspace concentrating

Headspace techniques

Isolation technique

© 2024 chempedia.info