Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocyanates reduction

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Adducts from various quaternary salts have been isolated, in reactions with aldehydes, a-ketoaldehydes, dialkylacylphosphonates and dialkyl-phosphonates, isocyanates, isothiocyanates, and so forth (Scheme 15) (36). The ylid (11) resulting from removal of a Cj proton from 3.4-dimethyl-S-p-hydroxyethylthiazolium iodide by NEtj in DMF gives with phenylisothiocyanate the stable dipolar adduct (12) that has been identified by its NMR spectrum and reactional product, such as acid addition and thiazolidine obtention via NaBH4 reduction (Scheme 16) (35). It must be mentioned that the adduct issued from di-p-tolylcarbodiimide is separated in its halohydrogenated form. An alkaline treatment occasions an easy ring expansion into a 1,4-thiazine derivative (Scheme 17) (35). [Pg.35]

Industrially, polyurethane flexible foam manufacturers combine a version of the carbamate-forming reaction and the amine—isocyanate reaction to provide both density reduction and elastic modulus increases. The overall scheme involves the reaction of one mole of water with one mole of isocyanate to produce a carbamic acid intermediate. The carbamic acid intermediate spontaneously loses carbon dioxide to yield a primary amine which reacts with a second mole of isocyanate to yield a substituted urea. [Pg.452]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Naphthalenesulfonic acid can be converted to l-naphthalenethiol/T25 -J6 - by reduction of the related sulfonyl chloride this product has some utihty as a dye intermediate, and is converted by reaction with alkyl isocyanates to 3 -naphthyl-A/-alkylthiocarbamates, which have pesticidal and herbicidal... [Pg.490]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

AT-Unsubstituted azetidin-2-ones are versatile intermediates in the preparation of a variety of novel /3-lactam containing systems. They are usually made either by reductive dechlorosulfonylation of alkene/chlorosulfonyl isocyanate cycloadducts cf. Section 5.09.3.3.2), which... [Pg.264]

Iodine azide, on the other hand, forms pure adducts with A -, A - and A -steroids by a mechanism analogous to that proposed for iodine isocyanate additions. Reduction of such adducts can lead to aziridines. However, most reducing agents effect elimination of the elements of iodine azide from the /mwj -diaxial adducts of the A - and A -olefins rather than reduction of the azide function to the iodo amine. Thus, this sequence appears to be of little value for the synthesis of A-, B- or C-ring aziridines. It is worthy to note that based on experience with nonsteroidal systems the application of electrophilic reducing agents such as diborane or lithium aluminum hydride-aluminum chloride may yet prove effective for the desired reduction. Lithium aluminum hydride accomplishes aziridine formation from the A -adducts, Le., 16 -azido-17a-iodoandrostanes (97) in a one-step reaction. The scope of this addition has been considerably enhanced by the recent... [Pg.24]

Reductive ring opening of the [i-lactam 10 (X = O), obtained by [2 + 2] cycloaddition of chloro-sulfonyl isocyanate and tetraphenylcyclopentadiene followed by treatment with /7-cresol, with sodium hydride in anhydrous tetrahydrofuran yields 3,5,6,7-tetraphenyl-2//-azepin-2-one (11, X = O).41 Surprisingly, similar treatment of the reduced /Mactam 10 (X = H2) is reported to yield 3,5,6,7-letraphenyl-2//-azepine (11, X = H2), the first monocyclic 277-azepine to be isolated and characterized. Physical data for this compound, however, are inconclusive and attempts to reproduce this synthesis have failed.291... [Pg.130]

Isocyanates and isothiocyanates are reduced to methylamines on treatment with LiAlH4. Lithium aluminium hydride does not usually reduce azo compounds (indeed these are the products from LiAlH4 reduction of nitro compounds, 19-59), but these can be reduced to hydrazo compounds by catalytic hydrogenation or with... [Pg.1556]

Reaction between alkyl halides and cyanide ion Elimination of water from N-alkylformamides Reduction of isocyanates... [Pg.1677]


See other pages where Isocyanates reduction is mentioned: [Pg.97]    [Pg.97]    [Pg.127]    [Pg.391]    [Pg.448]    [Pg.459]    [Pg.459]    [Pg.103]    [Pg.361]    [Pg.319]    [Pg.516]    [Pg.157]    [Pg.83]    [Pg.676]    [Pg.797]    [Pg.814]    [Pg.783]    [Pg.230]    [Pg.567]    [Pg.635]    [Pg.125]    [Pg.199]    [Pg.104]    [Pg.96]    [Pg.206]    [Pg.211]    [Pg.1653]    [Pg.1655]   
See also in sourсe #XX -- [ Pg.918 , Pg.1220 , Pg.1222 ]

See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.8 , Pg.254 ]

See also in sourсe #XX -- [ Pg.8 , Pg.254 ]




SEARCH



Isocyanates, phenyl reduction

Reduction of isocyanates

© 2024 chempedia.info