Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IS primary structure

Primary structure is the amino / ) acid sequence, which controls the shape of the protein and the role the protein serves in the body. Primary Structure Primary structure is the most fundamental of the four structural levels because it is the protein s amino acid sequence that determines its overall shape and function. So crucial is primary structure to function that the change of only one amino acid out of several hundred can drastically alter biological properties. The disease sickle-cell anemia, for example, is caused by a genetic defect in blood hemoglobin whereby valine is substituted for glutamic add at only one position in a chain of 146 amino acids. [Pg.1042]

Because three-dimensional structure is much more closely associated with function than is sequence, tertiary structure is more evolutionarily conserved than is primary structure. In other words, protein function is the most important characteristic, and protein function is determined by structure. Thus, the structure must be conserved, but not necessarily a specific amino acid sequence. [Pg.1044]

Because tertiary structure is more highly conserved than is primary structure (Section... [Pg.111]

Where helical secondaiy structures are represented by the cylinder model, the /i-strand. structures are visualized by the ribbon model (see the ribbons in Figure 2-124c). The broader side of these ribbons is oriented parallel to the peptide bond. Other representations replace the flat ribbons with flat arrows to visualize the sequence of the primary structure. [Pg.134]

There are several levels of pepfide sfrucfure The primary structure is the ammo acid sequence plus any disulfide links With the 20 ammo acids of Table 27 1 as building blocks 20 dipeptides 20 tripeptides 20" tetrapeptides and so on are possible Given a peptide of unknown structure how do we determine its ammo acid sequence" ... [Pg.1129]

The primary structure of a peptide is its ammo acid sequence We also speak of the secondary structure of a peptide that is the conformational relationship of nearest neighbor ammo acids with respect to each other On the basis of X ray crystallographic studies and careful examination of molecular models Linus Pauling and Robert B Corey of the California Institute of Technology showed that certain peptide conformations were more stable than others Two arrangements the a helix and the (5 sheet, stand out as... [Pg.1143]

Protein tertiary structure is also influenced by the environment In water a globu lar protein usually adopts a shape that places its hydrophobic groups toward the interior with Its polar groups on the surface where they are solvated by water molecules About 65% of the mass of most cells is water and the proteins present m cells are said to be m their native state—the tertiary structure m which they express their biological activ ity When the tertiary structure of a protein is disrupted by adding substances that cause the protein chain to unfold the protein becomes denatured and loses most if not all of Its activity Evidence that supports the view that the tertiary structure is dictated by the primary structure includes experiments m which proteins are denatured and allowed to stand whereupon they are observed to spontaneously readopt their native state confer matron with full recovery of biological activity... [Pg.1146]

The primary structure of a peptide is given by its ammo acid sequence plus any disulfide bonds between two cysteine residues The primary structure is determined by a systematic approach m which the protein is cleaved to smaller fragments even individual ammo acids The smaller fragments are sequenced and the mam sequence deduced by finding regions of overlap among the smaller peptides... [Pg.1151]

By analogy to the levels of structure of proteins the primary structure of DNA IS the sequence of bases along the polynucleotide chain and the A DNA B DNA and Z DNA helices are varieties of secondary structures... [Pg.1169]

Primary carbon (Section 2 13) A carbon that is directly at tached to only one other carbon Primary structure (Section 27 8) The sequence of ammo acids in a peptide or protein... [Pg.1291]

The three levels of structure listed above are also useful categories for describing nonprotein polymers. Thus details of the microstructure of a chain is a description of the primary structure. The overall shape assumed by an individual molecule as a result of the rotation around individual bonds is the secondary structure. Structures that are locked in by chemical cross-links are tertiary structures. [Pg.19]

Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site. Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site.
Secondary structure occurs mainly as a helices and p strands. The formation of secondary structure in a local region of the polypeptide chain is to some extent determined by the primary structure. Certain amino acid sequences favor either a helices or p strands others favor formation of loop regions. Secondary structure elements usually arrange themselves in simple motifs, as described earlier. Motifs are formed by packing side chains from adjacent a helices or p strands close to each other. [Pg.29]

Domains are formed by different combinations of secondary structure elements and motifs. The a helices and p strands of the motifs are adjacent to each other in the three-dimensional structure and connected by loop regions. Sequentially adjacent motifs, or motifs that are formed from consecutive regions of the primary structure of a polypeptide chain, are usually close together in the three-dimensional structure (Figure 2.20). Thus to a first approximation a polypeptide chain can be considered as a sequential arrangement of these simple motifs. The number of such combinations found in proteins is limited, and some combinations seem to be structurally favored. Thus similar domain structures frequently occur in different proteins with different functions and with completely different amino acid sequences. [Pg.30]

Different techniques give different and complementary information about protein structure. The primary structure is obtained by biochemical methods, either by direct determination of the amino acid sequence from the protein or indirectly, but more rapidly, from the nucleotide sequence of the... [Pg.373]

The aerospace field is a broad one and has a complex history. A comprehensive review of structural adhesive applications on currently flying aerospace vehicles alone could fill its own book. Hence this chapter will concentrate on the aerospace commercial transport industry and its use of adhesives in structural applications, both metallic and composite. Both primary structure, that is structure which carries primary flight loads and failure of which could result in loss of vehicle, and secondary structure will be considered. Structural adhesives use and practice in the military aircraft and launch vehicle/spacecraft fields as well as non-structural adhesives used on commercial aircraft will be touched on briefly as well. [Pg.1129]

Due to the fact that the primary structure of the Ultrahydrogel packing is a hydroxylated methacrylate, the interaction of many polar polymers with the packing is minimized easily. The presence of small amounts of anionic functions on the surface of the polymer usually requires the addition of salt to the mobile phase. A common mobile phase for many applications is 0.1 M NaN03. Detailed eluent selection guidelines are given in Table 11.6. [Pg.344]

Somatostatin is a tetradecapeptide of the hypothalamus that inhibits the release of pituitary growth hormone. Its amino acid sequence has been determined by a combination of Edman degradations and enzymic hydrolysis experiments. On the basis of the following data, deduce the primary structure of somatostatin ... [Pg.1154]

Whereas the primary structure of a protein is determined by the covalently linked amino acid residues in the polypeptide backbone, secondary and higher... [Pg.118]

The folding of a single polypeptide chain in three-dimensional space is referred to as its tertiary structure. As discussed in Section 6.2, all of the information needed to fold the protein into its native tertiary structure is contained within the primary structure of the peptide chain itself. With this in mind, it was disappointing to the biochemists of the 1950s when the early protein structures did not reveal the governing principles in any particular detail. It soon became apparent that the proteins knew how they were supposed to fold into tertiary... [Pg.171]


See other pages where IS primary structure is mentioned: [Pg.286]    [Pg.173]    [Pg.179]    [Pg.25]    [Pg.286]    [Pg.173]    [Pg.179]    [Pg.25]    [Pg.79]    [Pg.116]    [Pg.188]    [Pg.1135]    [Pg.1150]    [Pg.63]    [Pg.219]    [Pg.403]    [Pg.29]    [Pg.972]    [Pg.1147]    [Pg.73]    [Pg.37]    [Pg.43]    [Pg.49]    [Pg.1144]    [Pg.1150]    [Pg.118]    [Pg.141]    [Pg.147]    [Pg.159]    [Pg.161]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Primary structure

© 2024 chempedia.info