Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization order

The above Cl reactions will occur if they are exothennic. In order for these reactions to occur with high efficiency, the pressure in the ion source must be raised to the milliTorr level. Also, the reagent species are often introduced in large excess so that they are preferentially ionized by the electron beam. [Pg.1331]

Figure Cl. 1.3 shows a plot of tire chemical reactivity of small Fe, Co and Ni clusters witli FI2 as a function of size (full curves) [53]. The reactivity changes by several orders of magnitudes simply by changing tire cluster size by one atom. Botli geometrical and electronic arguments have been put fortli to explain such reactivity changes. It is found tliat tire reactivity correlates witli tire difference between tire ionization potential (IP) and tire electron affinity... Figure Cl. 1.3 shows a plot of tire chemical reactivity of small Fe, Co and Ni clusters witli FI2 as a function of size (full curves) [53]. The reactivity changes by several orders of magnitudes simply by changing tire cluster size by one atom. Botli geometrical and electronic arguments have been put fortli to explain such reactivity changes. It is found tliat tire reactivity correlates witli tire difference between tire ionization potential (IP) and tire electron affinity...
Figure Cl.4.13. Trap modulation experiment showing much greater deptli of ion intensity modulation (by more tlian one order of magnitude) tlian fluorescence or atom number modulation, demonstrating tliat excited atoms are not tire origin of tire associative ionizing collisions. Figure Cl.4.13. Trap modulation experiment showing much greater deptli of ion intensity modulation (by more tlian one order of magnitude) tlian fluorescence or atom number modulation, demonstrating tliat excited atoms are not tire origin of tire associative ionizing collisions.
Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

In order to summarize the procedures used for computing ionization constants of titratable residues in proteins, the steps used in our algorithm will be enumerated below ... [Pg.187]

When the states P1 and P2 are described as linear combinations of CSFs as introduced earlier ( Fi = Zk CiKK), these matrix elements can be expressed in terms of CSF-based matrix elements < K I eri IOl >. The fact that the electric dipole operator is a one-electron operator, in combination with the SC rules, guarantees that only states for which the dominant determinants differ by at most a single spin-orbital (i.e., those which are "singly excited") can be connected via electric dipole transitions through first order (i.e., in a one-photon transition to which the < Fi Ii eri F2 > matrix elements pertain). It is for this reason that light with energy adequate to ionize or excite deep core electrons in atoms or molecules usually causes such ionization or excitation rather than double ionization or excitation of valence-level electrons the latter are two-electron events. [Pg.288]

It has already been noted that, as well as alkylbenzenes, a wide range of other aromatic compounds has been nitrated with nitronium salts. In particular the case of nitrobenzene has been examined kinetically. Results are collected in table 4.4. The reaction was kinetically of the first order in the concentration of the aromatic and of the nitronium salt. There is agreement between the results for those cases in which the solvent induces the ionization of nitric acid to nitronium ion, and the corresponding results for solutions of preformed nitronium salts in the same solvent. [Pg.68]

There are two common occasions when rapid measurement is preferable. The first is with ionization sources using laser desorption or radionuclides. A pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few nanoseconds (ion traps excluded). If a point ion detector were to be used for this type of pulsed ionization, then after the beginning of the scan no more ions would reach the collector because there would not be any left The array collector overcomes this difficulty by detecting the ions produced all at the same instant. [Pg.209]

Ionization energy. The minimum energy of excitation of an atom, a molecule, or a molecular moiety that is required to remove an electron in order to produce a positive ion. [Pg.439]

Table 7.1 Ground configurations and ground states of atoms, listed in increasing order of atomic number Z, and their first ionization energies, E... Table 7.1 Ground configurations and ground states of atoms, listed in increasing order of atomic number Z, and their first ionization energies, E...
Figure 8.15 shows the C Is spectra of ftiran, pyrrole and thiophene. Owing to the decreasing electronegativity of the order O > N > S the C Is line is shifted to low ionization... [Pg.310]

The existence of isotope shifts and of tunable lasers with narrow Hnewidth leads to the possibHity of separating isotopes with laser radiation (113,114). This can be of importance, because isotopicaHy selected materials are used for many purposes in research, medicine, and industry. In order to separate isotopes, one needs a molecule that contains the desired element and has an isotope shift in its absorption spectmm, plus a laser that can be tuned to the absorption of one of the isotopic constituents. Several means for separating isotopes are avaHable. The selected species may be ionized by absorption of several photons and removed by appHcation of an electric field, or photodissociated and removed by chemical means. [Pg.19]

Hydrated amorphous silica dissolves more rapidly than does the anhydrous amorphous silica. The solubility in neutral dilute aqueous salt solutions is only slighdy less than in pure water. The presence of dissolved salts increases the rate of dissolution in neutral solution. Trace amounts of impurities, especially aluminum or iron (24,25), cause a decrease in solubility. Acid cleaning of impure silica to remove metal ions increases its solubility. The dissolution of amorphous silica is significantly accelerated by hydroxyl ion at high pH values and by hydrofluoric acid at low pH values (1). Dissolution follows first-order kinetic behavior and is dependent on the equilibria shown in equations 2 and 3. Below a pH value of 9, the solubility of amorphous silica is independent of pH. Above pH 9, the solubility of amorphous silica increases because of increased ionization of monosilicic acid. [Pg.488]

Anionic Polymerization of Cyclic Siloxanes. The anionic polymerization of cyclosiloxanes can be performed in the presence of a wide variety of strong bases such as hydroxides, alcoholates, or silanolates of alkaH metals (59,68). Commercially, the most important catalyst is potassium silanolate. The activity of the alkaH metal hydroxides increases in the foUowing sequence LiOH < NaOH < KOH < CsOH, which is also the order in which the degree of ionization of thein hydroxides increases (90). Another important class of catalysts is tetraalkyl ammonium, phosphonium hydroxides, and silanolates (91—93). These catalysts undergo thermal degradation when the polymer is heated above the temperature requited (typically >150°C) to decompose the catalyst, giving volatile products and the neutral, thermally stable polymer. [Pg.46]

For most color photographic systems, development is the rate determining step, and within that step the formation of semiquinone is the slow process (37). The fate of the highly reactive QDI is deterrnined by the relative rates of a number of competing processes (38). The desired outcome is reaction with ionized coupler to produce dye (eq. 3). Typically, the second-order rate constant for this process with ionized coupler is about 10 to 10 ... [Pg.473]

A reactive dye for ceUulose contains a chemical group that reacts with ionized hydroxyl ions in the ceUulose to form a covalent bond. When alkaH is added to a dyebath containing ceUulose and a reactive dye, ionization of ceUulose and the reaction between dye and fiber is initiated. As this destroys the equihbrium more dye is then absorbed by the fiber in order to re-estabUsh the equUibrium between active dye in the dyebath and fiber phases. At the same time the addition of extra cations, eg, Na+ from using Na2C02 as alkaH, has the same effect as adding extra salt to a direct dye. Thus the addition of alkaH produces a secondary exhaustion. [Pg.354]


See other pages where Ionization order is mentioned: [Pg.1324]    [Pg.1326]    [Pg.2083]    [Pg.2477]    [Pg.2478]    [Pg.2479]    [Pg.2577]    [Pg.229]    [Pg.185]    [Pg.186]    [Pg.383]    [Pg.134]    [Pg.803]    [Pg.804]    [Pg.134]    [Pg.723]    [Pg.438]    [Pg.570]    [Pg.570]    [Pg.43]    [Pg.41]    [Pg.300]    [Pg.234]    [Pg.400]    [Pg.33]    [Pg.126]    [Pg.337]    [Pg.435]    [Pg.403]    [Pg.151]    [Pg.349]    [Pg.526]    [Pg.66]    [Pg.24]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Ionization potentials energetic ordering

Ionization potentials order

Ionization radii bond order

© 2024 chempedia.info