Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic reactions, definition

It was G. N. Lewis who extended the definitions of acids and bases still further, the underlying concept being derived from the electronic theory of valence. It provided a much broader definition of acids and bases than that provided by the Lowry-Bronsted concept, as it furnished explanations not in terms of ionic reactions but in terms of bond formation. According to this theory, an acid is any species that is capable of accepting a pair of electrons to establish a coordinate bond, whilst a base is any species capable of donating a pair of electrons to form such a coordinate bond. A Lewis acid is an electron pair acceptor, while a Lewis base is an electron pair donor. These definitions of acids and bases fit the Lowry-Bronsted and Arrhenius theories, and cover many other substances which could not be classified as acids or bases in terms of proton transfer. [Pg.592]

The chemical behavior of ions, ion pairs, and polarizable molecules partakes of the same indistinctness as the definitions of these species. Any attempt to make a complete catalog of the reactions of ions will almost certainly include borderline reactions whose intermediates are in fact ion-pairs or even covalent molecules. For many purposes the identification of a reaction as carbonium ion-like, or what the Germans would call Krypto-ionenreaktion, is as useful as the certain knowledge that the intermediate is actually a carbonium ion. Many of the ionic reaction mechanisms in the literature do not represent actual free ions and were not so intended by their authors. The ionic representation is often merely a convenient simplification if it is an oversimplification it is one that is easily rectified when the pertinent data become available. The value of such approximate mechanisms is that... [Pg.74]

Chapters 10 and 11 describe the special properties of liquid water. Because of its substantial dipole moment, water is especially effective as a solvent, stabilizing both polar and ionic solutes. Water is not only the solvent, but also participates in acid-base reactions as a reactant. Water plays an integral role in virtually all biochemical reactions essential to the survival of living organisms these reactions involve acids, bases, and ionic species. In view of the wide-ranging importance of these reactions, we devote the remainder of this chapter to acid-base behavior and related ionic reactions in aqueous solution. The Bronsted-Lowry definition of acids and bases is especially well suited to describe these reactions. [Pg.629]

Here is by definition the diffusion coefficient and has the dimensions of cm sec if J is expressed in the conventional units given above, and is the concentration, in molecules/cm. Strictly speaking, this equation is correct only for a two-component system it is applicable in multicomponent systems only if the interaction between flows can be neglected [29]. If the flow of substance A is affected by an external potential (for example, electrostatic interactions greatly influence ionic reactions), Eq. (2-83) can be modified to give... [Pg.62]

In order to calculate the equOibrium composition of a system consisting of one or more phases in equilibrium with an aqueous solution of electrolytes, a review of the basic thermodynamic functions and the conditions of equilibrium is important, This is particularly true inasmuch as the study of aqueous solutions requires consideration of chemical and/or ionic reactions in the aqueous phase as well as a thermodynamic framework which is, for the most part, quite different from those definitions associated with nonelectrolytes. Therefore, in this section we will review the definition of the basic thermodynamic functions, the partial molar quantities, chemical potentials, conditions of equilibrium, activities, activity coefficients, standard states, and composition scales encountered in describing aqueous solutions. [Pg.13]

In reactions at the sulfur atom of a sulfinate ion to form a sulfone, of a sulfoxide to form R3S+—0, or of bisulfite ion to form a sulfonic acid, the fractionally positive sulfur becomes more positively charged in the poly-ionic transition states. Definitive experimental evidence... [Pg.176]

To summarize the analysis of pH profiles, even complex ones, is not an arcane or difficult art. Systematic analysis in terms of ionic equilibria, predominant species, and the reaction orders with respect to [H+] provides the solution. Kinetically indistinguishable alternatives can never, by definition, be distinguished from the kinetic data contained in the pH profile. Other measurements, including some alluded to earlier and others given in Chapter 10, may, however, allow these distinctions. [Pg.145]

Where e is the excess acid in mol/L and ionic concentrations are expressed as mol/L. While this more precise definition may apply in some strictly chemical responses such as soil erosion, Biydges and Summers 19) have considered the more complete reactions including biological ionic utilizations and have defined an "acidifying potential" of precipitation as ... [Pg.41]

The concept of surface concentration Cg j requires closer definition. At the surface itself the ionic concentrations will change not only as a result of the reaction but also because of the electric double layer present at the surface. Surface concentration is understood to be the concentration at a distance from the surface small compared to diffusion-layer thickness, yet so large that the effects of the EDL are no fonger felt. This condition usually is met at points about 1 nm from the surface. [Pg.56]

In this first attempt at a systematic definition of the problem it is recognized explicitly that there may be a multiplicity of chemically distinct chain-carriers growing simultaneously in the same reaction mixture (enieidic polymerisation). The fact that these may include paired and unpaired ions is considered from the point of view of conventional ionic equilibria, and a warning is given that there may be tight and solvent-separated ion-pairs to be considered. This idea, taken over from the theory of anionic polymerisations, was shown much later to be inappropriate for cationic polymerisations 154. ... [Pg.414]

It is considered that Tables 1-4 contain most of those systems for which it has been definitely established whether the chaincarriers are ionic or non-ionic if any have been overlooked, they cannot be numerous. The operative word here is definitely . No doubt, ideas as to what constitutes proof in this domain vary from one worker to another, and also with time. There are very many systems for which an ionic chain-carrier seems at present the only reasonable hypothesis, but in this context it is essential to recall that not very long ago the only reasonable reaction between perchloric acid and styrene appeared to be protonation of the olefin ... [Pg.632]

I consider there to be a sharp distinction between the most polar form of a molecule and its ionically dissociated form. The reason for this is empirical An ion is defined as a species carrying a charge equal to an integral multiple of the electronic charge, and this definition implies that it will have a characteristic predictable electronic spectrum and, under suitable conditions, mobility in an electric field. There is so far no evidence which would compel one to abandon this definition, and I think it is important to distinguish clearly in this context between reaction intermediates (chain carriers, active species) of finite life-time, and transition states. [Pg.642]

Sigma (a) bonds Sigma bonds have the orbital overlap on a line drawn between the two nuclei, simple cubic unit cell The simple cubic unit cell has particles located at the corners of a simple cube, single displacement (replacement) reactions Single displacement reactions are reactions in which atoms of an element replace the atoms of another element in a compound, solid A solid is a state of matter that has both a definite shape and a definite volume, solubility product constant (/ p) The solubility product constant is the equilibrium constant associated with sparingly soluble salts and is the product of the ionic concentrations, each one raised to the power of the coefficient in the balanced chemical equation, solute The solute is the component of the solution that is there in smallest amount, solution A solution is defined as a homogeneous mixture composed of solvent and one or more solutes. [Pg.365]

The problem of the definition of charge and consideration of the sizes of reactants (the diameters of the reactant ions and the activated complex are assumed equal in the derivation of (2.184)) is most acute with reactions of metalloproteins. Probably the most nsed expression for the effect of ionic strength on such reactions is ... [Pg.113]


See other pages where Ionic reactions, definition is mentioned: [Pg.172]    [Pg.2]    [Pg.111]    [Pg.99]    [Pg.324]    [Pg.697]    [Pg.6]    [Pg.109]    [Pg.122]    [Pg.2]    [Pg.34]    [Pg.301]    [Pg.353]    [Pg.34]    [Pg.451]    [Pg.107]    [Pg.193]    [Pg.54]    [Pg.106]    [Pg.235]    [Pg.42]    [Pg.705]    [Pg.260]    [Pg.109]    [Pg.101]    [Pg.115]    [Pg.117]   
See also in sourсe #XX -- [ Pg.877 ]




SEARCH



Ionic definition

Ionic reactions

Reaction definition

© 2024 chempedia.info