Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic bonding crystal structures

Ti ossbauer spectroscopy is the term now used to describe a new ana-lytical technique which has developed using y-ray nuclear resonance fluorescence or the Mossbauer effect. For most of the time since Rudolf Mossbauer s discovery in 1958 it was the physicist who utilized this new tool. Starting approximately in 1962 some chemists realized the potential of this new technique. Since then they have applied Mossbauer spectroscopy to the study of chemical bonding, crystal structure, electron density, ionic states, and magnetic properties as well as other properties. It is now considered a complimentary tool to other accepted spectroscopic techniques such as NMR, NQR, and ESR. [Pg.186]

In Figure 5 a comparison is presented for the calculated Vickers hardness (Equation 6) and the measured Vickers hardnesses for several ionic bonded crystals with NaCl-structure. [Pg.52]

In Chapter 5 we will see that packing is the most important consideration in determining the structure adopted by predominantly ionically bonded crystals. The difference in between some crystal structures is very small. In such cases, for example, the zinc blende and wurtzite structures (named after the two crystalline forms of ZnS), the difference in the resulting electrostatic energy is small. For zinc blende and wurtzite it is -0.2%. When the energy difference between structure types of the same stoichiometry is small, we often encounter polymorphism the compound can form with more than one structure. We will examine this useful complication in Chapter 7. [Pg.55]

X-ray structural studies have played a major role in transforming chemistry from a descriptive science at the beginning of the twentieth century to one in which the properties of novel compounds can be predicted on theoretical grounds. When W.L. Bragg solved the very first crystal structure, that of rock salt, NaCl, the results completely changed prevalent concepts of bonding forces in ionic compounds. [Pg.13]

There is a lively controversy concerning the interpretation of these and other properties, and cogent arguments have been advanced both for the presence of hydride ions H" and for the presence of protons H+ in the d-block and f-block hydride phases.These difficulties emphasize again the problems attending any classification based on presumed bond type, and a phenomenological approach which describes the observed properties is a sounder initial basis for discussion. Thus the predominantly ionic nature of a phase cannot safely be inferred either from crystal structure or from calculated lattice energies since many metallic alloys adopt the NaCl-type or CsCl-type structures (e.g. LaBi, )S-brass) and enthalpy calculations are notoriously insensitive to bond type. [Pg.66]

The formulated principals correlating crystal structure features with the X Nb(Ta) ratio do not take into account the impact of the second cation. Nevertheless, substitution of a second cation in compounds of similar types can change the character of the bonds within complex ions. Specifically, the decrease in the ionic radius of the second (outer-sphere) cation leads not only to a decrease in its coordination number but also to a decrease in the ionic bond component of the complex [277]. [Pg.116]

This by no means exhaustive discussion may serve to indicate the value of the information provided by magnetic data relative to the nature of the chemical bond. The quantum-mechanical rules for electron-pair bonds are essential to the treatment. Much further information is provided when these methods of attack are combined with crystal structure data, a topic which has been almost completely neglected in this paper. It has been found that the rules for electron-pair bonds permit the formulation of a set of structural principles for non-ionic inorganic crystals similar to that for complex ionic crystals the statement of these principles and applications illustrating their use will be the subject of an article to be published in the Zeitschrift fur Kristallographie. [Pg.97]

Reactions of UCI4 with [Li RC(NCy)2 (THF)]2 (R = Me, Bu ) in THF gave the tris(amidinate) compounds [RC(NCy)2]3UCl that could be reduced with lithium powder in THF to the dark-green homoleptic uranium(lll) complexes [RC(NCy)2]3U. Comparison of the crystal structure of [MeC(NCy)2]3U with those of the lanthanide analog showed that the average U-N distance is shorter than expected from a purely ionic bonding model. ... [Pg.241]

Sulfides play an important role in hydrotreating catalysis. Whereas oxides are ionic structures, in which cations and anions preferably surround each other to minimize the repulsion between ions of the same charge, sulfides have largely covalent bonds as a consequence there is no repulsion which prevents sulfur atoms forming mutual bonds and hence the crystal structures of sulfides differ, in general, greatly from those of oxides. [Pg.176]

There has never been a really clear understanding of what a bond line stands for. Originally it was meant to indicate simply that the two atoms between which it is drawn are held strongly together. However, it is now usually taken to indicate a shared pair of electrons, that is, a covalent bond. In contrast, the presence of ionic bonds in a molecule or crystal is usually implied by the indication of the charges on the atoms, and no bond line is drawn. This immediately raises the question of how polar a bond has to be before the bond line is omitted. Whereas the structure of the LiF molecule would normally be written as Li+F without a bond line, even the highly ionic BeF2 is often written as F—Be—F rather than as F Be2+ F . [Pg.14]

Finally, we should note that the lines that are often drawn in illustrations of three-dimensional ionic crystal structures to better show the relative arrangement of the ions do not represent shared pairs of electrons, that is, they are not bond lines. [Pg.14]

Chromium has a similar electron configuration to Cu, because both have an outer electronic orbit of 4s. Since Cr3+, the most stable form, has a similar ionic radius (0.64 A0) to Mg (0.65 A0), it is possible that Cr3+ could readily substitute for Mg in silicates. Chromium has a lower electronegativity (1.6) than Cu2+ (2.0) and Ni (1.8). It is assumed that when substitution in an ionic crystal is possible, the element having a lower electronegativity will be preferred because of its ability to form a more ionic bond (McBride, 1981). Since chromium has an ionic radius similar to trivalent Fe (0.65°A), it can also substitute for Fe3+ in iron oxides. This may explain the observations (Han and Banin, 1997, 1999 Han et al., 2001a, c) that the native Cr in arid soils is mostly and strongly bound in the clay mineral structure and iron oxides compared to other heavy metals studied. On the other hand, humic acids have a high affinity with Cr (III) similar to Cu (Adriano, 1986). The chromium in most soils probably occurs as Cr (III) (Adriano, 1986). The chromium (III) in soils, especially when bound to... [Pg.165]

The next two figures show that crystal structure type and ionicity also play a role in determining dislocation mobility, and therefore hardness. First, if data for the III-N compounds are plotted on Figure 5.2 they do not fall on the regression line. The reason is that they have hexagonal rather than cubic crystal structures. However, when plotted by themselves as in Figure 5.3 their hardnesses are proportional to their bond moduli. [Pg.69]


See other pages where Ionic bonding crystal structures is mentioned: [Pg.393]    [Pg.422]    [Pg.406]    [Pg.469]    [Pg.128]    [Pg.161]    [Pg.597]    [Pg.66]    [Pg.128]    [Pg.168]    [Pg.228]    [Pg.518]    [Pg.846]    [Pg.78]    [Pg.685]    [Pg.87]    [Pg.5]    [Pg.227]    [Pg.158]    [Pg.352]    [Pg.277]    [Pg.78]    [Pg.95]    [Pg.109]    [Pg.117]    [Pg.1034]    [Pg.33]    [Pg.221]    [Pg.155]    [Pg.80]    [Pg.92]    [Pg.56]    [Pg.113]    [Pg.208]    [Pg.104]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



Bond ionicity

Bonding crystals

Bonding ionic

Bonding ionicity

Bonds ionic

Crystal ionic

Crystal ionicity

Crystal structure bonding

Crystals, ionic bonding

Ionic bond bonding

Ionic bond crystals

Ionic bonds crystal structures

Ionic bonds crystal structures

Ionic crystal, structure

Ionic structure

Ionically bonded

© 2024 chempedia.info