Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic biocatalysis

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

There is still a long way to go before ionic liquids can become commonly used in biocatalysis. This will require ... [Pg.345]

The aspects of medium engineering summarized so far were a hot topic in biocatalysis research during the 1980s and 1990s [5]. Nowadays, all of them constitute a well-established methodology that is successfully employed by chemists in synthetic applications, both in academia and industry. In turn, the main research interests of medium engineering have moved toward the use of ionic liquids as reaction media and the employment of additives. [Pg.14]

In recent years ionic liquids have also been employed as media for reactions catalyzed both by isolated enzymes and by whole cells, and excellent reviews on this topic are already available [47]. Biocatalysis has been mainly conducted in those room-temperature ionic liquids that are composed of a 1,3-dialkylimidazolium or N-alkylpyridinium cation and a noncoordinating anion [47aj. [Pg.14]

To carry out the enzymatic amidation of carboxylic acids, normally two strategies are considered the use of ionic liquids or the removal of water from the reaction media at high temperature or reduced pressure. For instance, one of the first examples of the use of ionic liquids in biocatalysis has been the preparation of octanamide from octanoic acid as starting material and ammonia in the presence of CALB (Scheme 7.3) [11]. [Pg.174]

The use of ionic liquids (ILs) to replace organic or aqueous solvents in biocatalysis processes has recently gained much attention and great progress has been accomplished in this area lipase-catalyzed reactions in an IL solvent system have now been established and several examples of biotransformation in this novel reaction medium have also been reported. Recent developments in the application of ILs as solvents in enzymatic reactions are reviewed. [Pg.3]

It should be noted that the dynamics studied by fluorescence methods is the dynamics of relaxation and fluctuations of the electric field. Dipole-orientational processes may be directly related to biological functions of proteins, in particular, charge transfer in biocatalysis and ionic transport. One may postulate that, irrespective of the origin of the charge balance disturbance, the protein molecule responds to these changes in the same way, in accordance with its dynamic properties. If the dynamics of dipolar and charged groups in proteins does play an important role in protein functions, then fluorescence spectroscopy will afford ample opportunities for its direct study. [Pg.106]

Another environmental issue is the use of organic solvents. The use of chlorinated hydrocarbons, for example, has been severely curtailed. In fact, so many of the solvents favored by organic chemists are now on the black list that the whole question of solvents requires rethinking. The best solvent is no solvent, and if a solvent (diluent) is needed, then water has a lot to recommend it. This provides a golden opportunity for biocatalysis, since the replacement of classic chemical methods in organic solvents by enzymatic procedures in water at ambient temperature and pressure can provide substantial environmental and economic benefits. Similarly, there is a marked trend toward the application of organometal-lic catalysis in aqueous biphasic systems and other nonconventional media, such as fluorous biphasic, supercritical carbon dioxide and ionic liquids. ... [Pg.195]

An ionic liquid can be used as a pure solvent or as a co-solvent. An enzyme-ionic liquid system can be operated in a single phase or in multiple phases. Although most research has focused on enzymatic catalysis in ionic liquids, application to whole cell systems has also been reported (272). Besides searches for an alternative non-volatile and polar media with reduced water and orgamc solvents for biocatalysis, significant attention has been paid to the dispersion of enzymes and microorganisms in ionic liquids so that repeated use of the expensive biocatalysts can be realized. Another incentive for biocatalysis in ionic liquid media is to take advantage of the tunability of the solvent properties of the ionic liquids to achieve improved catalytic performance. Because biocatalysts are applied predominantly at lower temperatures (occasionally exceeding 100°C), thermal stability limitations of ionic liquids are typically not a concern. Instead, the solvent properties are most critical to the performance of biocatalysts. [Pg.223]

Some general trends have started to appear correlating the properties of some ionic liquids to performance in biocatalysis (273), but conflicting observations have also been reported. The inconsistency of the performance of some systems could arise from the presence of impurities in the ionic liquids (or possibly in the substrates). [Pg.223]

In a recent review, some positive attributes of ionic liquids in biocatalysis were discussed 273). An example was given, which compares the enzymatic performance of Pseudomonas cepacia lipase (PCL)-catalyzed reactions as a function of the solvent polarity in both organic and ionic solvents, as shown in Fig. 17. The PCL shows no activity in organic solvents in the polarity range of the ionic liquids, but it is active in the ionic liquids. [Pg.224]

Promising developments of ionic liquids for biocatalysis reflect their enhanced thermal and operational stabilities, sometimes combined with high regio- or enantioselectivities. Ionic liquids are particularly attractive media for certain biotransformations of highly polar substrates, which cannot be performed in water owing to equilibrium limitations 297). [Pg.230]

Wang, S.F., Chen, T., Zhang, Z.L., Pang, D.W., and Wong, K.Y., Effects of hydrophobic room-temperature ionic liquid l-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and biocatalysis of heme proteins entrapped in agarose hydrogel films, Electrochem. Commun., 9, 1709-1714, 2007. [Pg.136]

Biocatalysis in ionic liquids was first reported in 2000 [7, 8, 9]. The early work involved ionic liquids composed of a 1,3-dialkylimidazolium or N-alkylpyridinium cation and a weakly-coordinating anion (Figure 10.1). More recently, attention is shifting toward new structural types. A number of reviews of this rapidly expanding subject have appeared [10, 11, 12, 13, 14]. [Pg.227]


See other pages where Ionic biocatalysis is mentioned: [Pg.336]    [Pg.339]    [Pg.342]    [Pg.353]    [Pg.353]    [Pg.15]    [Pg.119]    [Pg.364]    [Pg.271]    [Pg.184]    [Pg.225]    [Pg.322]    [Pg.488]    [Pg.126]    [Pg.56]    [Pg.79]    [Pg.4]    [Pg.223]    [Pg.181]    [Pg.336]    [Pg.339]    [Pg.342]    [Pg.353]    [Pg.353]    [Pg.577]    [Pg.68]    [Pg.191]    [Pg.215]   
See also in sourсe #XX -- [ Pg.641 ]




SEARCH



Biocatalysis

© 2024 chempedia.info