Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

8-iodolactone

Cyclopentene derivatives with carboxylic acid side-chains can be stereoselectively hydroxy-lated by the iodolactonization procedure (E.J. Corey, 1969, 1970). To the trisubstituted cyclopentene described on p. 210 a large iodine cation is added stereoselectively to the less hindered -side of the 9,10 double bond. Lactone formation occurs on the intermediate iod-onium ion specifically at C-9ot. Later the iodine is reductively removed with tri-n-butyltin hydride. The cyclopentane ring now bears all oxygen and carbon substituents in the right stereochemistry, and the carbon chains can be built starting from the C-8 and C-12 substit""" ... [Pg.275]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

PGF2a- The cyclopentane ring of the Corey lactone (9) is the host of four contiguous stereogenic centers. Retrosynthetic simplification of 9 provides 10, a construct which is more complex than 9 Nevertheless, intermediate 10 possesses structural features that satisfy the requirement for the iodolactonization transform. The iodolactone in 10 constitutes the retron for the iodolactonization transform.11 Cleavage of the indicated bonds in 10 sacrifices two of the five stereocenters and provides unsaturated carboxylic acid... [Pg.70]

Scheme 6. Asymmetric Diels-Alder approach to enantiomerically pure iodolactone 32. Scheme 6. Asymmetric Diels-Alder approach to enantiomerically pure iodolactone 32.
Intermediate 8, the projected electrophile in a coupling reaction with intermediate 7, could conceivably be derived from iodolactone 16. In the synthetic direction, cleavage of the acetonide protecting group in 16 with concomitant intramolecular etherification could result in the formation of the functionalized tetrahydrofuran ring of... [Pg.234]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

A cursory inspection of key intermediate 8 (see Scheme 1) reveals that it possesses both vicinal and remote stereochemical relationships. To cope with the stereochemical challenge posed by this intermediate and to enhance overall efficiency, a convergent approach featuring the union of optically active intermediates 18 and 19 was adopted. Scheme 5a illustrates the synthesis of intermediate 18. Thus, oxidative cleavage of the trisubstituted olefin of (/ )-citronellic acid benzyl ester (28) with ozone, followed by oxidative workup with Jones reagent, affords a carboxylic acid which can be oxidatively decarboxylated to 29 with lead tetraacetate and copper(n) acetate. Saponification of the benzyl ester in 29 with potassium hydroxide provides an unsaturated carboxylic acid which undergoes smooth conversion to trans iodolactone 30 on treatment with iodine in acetonitrile at -15 °C (89% yield from 29).24 The diastereoselectivity of the thermodynamically controlled iodolacto-nization reaction is approximately 20 1 in favor of the more stable trans iodolactone 30. [Pg.239]

Unsaturated carboxylic acid 17 possesses the requisite structural features for an iodolactonization reaction.16 A source of electrophilic iodine could conceivably engage either diastereoface of the A20,21 double bond in 17. The diastereomeric iodonium ion inter-... [Pg.241]

Curran s synthesis of ( )-A9(l2)-capnellene [( )-2] is detailed in Schemes 30 and 31. This synthesis commences with the preparation of racemic bicyclic vinyl lactone 147 from ( )-norbomenone [( )-145] by a well-known route.61 Thus, Baeyer-Villiger oxidation of (+)-145 provides unsaturated bicyclic lactone 146, a compound that can be converted to the isomeric fused bicyclic lactone 147 by acid-catalyzed rearrangement. Reaction of 147 with methylmagne-sium bromide/CuBr SMe2 in THF at -20 °C takes the desired course and affords unsaturated carboxylic acid 148 in nearly quantitative yield. Iodolactonization of 148 to 149, followed by base-induced elimination, then provides the methyl-substituted bicyclic vinyl lactone 150 as a single regioisomer in 66% overall yield from 147. [Pg.413]

In contrast, the reaction of 147 with 1, in the absence of catalyst, affords traces of adduct after 3 days. The activation by I2 is due to the formation of cationic iodolactonization intermediate 148 (Scheme 4.28) which reacts easily with the diene, affording the dihydrooxazole 149 which is then treated with Bu N to give the final adduct. With some substrates, this method of activation was proved to be more effective than the use of Lewis acids. [Pg.191]

The double bond in (28) can come from iodolactone (29) by elimination and hence Diels-Alder adduct (30) is the starting material. [Pg.452]

Iodine is a very good electrophile for effecting intramolecular nucleophilic addition to alkenes, as exemplified by the iodolactonization reaction71 Reaction of iodine with carboxylic acids having carbon-carbon double bonds placed to permit intramolecular reaction results in formation of iodolactones. The reaction shows a preference for formation of five- over six-membered72 rings and is a stereospecific anti addition when carried out under basic conditions. [Pg.312]

Under kinetic conditions, iodolactonization reflects reactant conformation. Several cases illustrate how the stereoselectivity of iodolactonization can be related to reactant conformation. For example, the high stereoselectivity of 1 corresponds to proximity of the carboxylate group to one of the two double bonds in the preferred reactant... [Pg.313]

Entries 15 to 18 are examples of use of iodocyclization in multistep syntheses. In Entry 15, iodolactonization was followed by elimination of HI from the bicyclic lactone. In Entry 16, a cyclic peroxide group remained unaffected by the standard iodolactonization and subsequent Bu3SnH reductive deiodination. (See Section 5.5 for... [Pg.319]

Reactants with internal nucleophiles are also subject to cyclization by electrophilic sulfur reagents, a reaction known as sulfenylcyclization.92 As for iodolactonization, unsaturated carboxylic acids give products that result from anti addition.93... [Pg.320]

On page 313, the effect of methyl substitution on the stereoselectivity of a,a-diallylcarboxylic acids under iodolactonization conditions was discussed. Consider the two compounds shown and construct a reaction energy profile for... [Pg.365]

It has been found that when 8,e-enolates bearing (3-siloxy substiments are subject to iodolactonization, the substituent directs the stereochemistry of cyclization in a manner opposite to an alkyl substituent. Suggest a TS structure that would account for this difference. [Pg.366]

Diastereoselective iodolactonization of y, -unsaturated acids.2 Kinetic io-dolactonization of the meso-1,6-heptadien-4-carboxylic acid (1) results in two prod-... [Pg.181]

Iodolactonization of anti,syn-1 could result in four iodolactones, two resulting from face selectivity, and two resulting from diastereotopic olefin selectivity. In practice only three lactones are formed in a 142 4.7 1 ratio, with 4 being essentially the only product. In fact this kinetic iodolactonization proceeds with 147 1 olefin selectivity and 30 1 face selectivity, considerably higher than the selectivity observed in previous iodolactonization of 3-methyl-4-pentenoic acid (8, 257). Lac-tonization of 1 also shows cis-C4,C5 selectivity. [Pg.182]

SCHEME 2. The stereoselective Diels-Alder reaction leading to an important iodolactone prosta-glandine precursor... [Pg.1037]

Lewis acid catalysis is not limited to cases in which increased yields or enhanced selectivities are desired. Lewis acids offer also the possibility to induce chiral information leading to enantioselective product formation. The enantioselective induction by chiral Lewis acids found widespread application in organic synthesis, especially in the synthesis of natural products with many chiral centres. An enantioselective Diels-Alder reaction is the key step in the synthesis of an iodolactone prostaglandine precursor (Scheme 6).88... [Pg.1045]

A very effective method for removal of the chiral auxiliary from cyclohexenones 34 involves treatment with I2 in THF-H2O to give the iodolactones 35 (Scheme 9). These highly functionalized chiral cyclohexanones have figured prominently in the asymmetric synthesis of natural products e.g. Scheme 15. Furthermore, selective cleavage of the cyclohexanone ring in 35... [Pg.4]


See other pages where 8-iodolactone is mentioned: [Pg.335]    [Pg.157]    [Pg.28]    [Pg.159]    [Pg.70]    [Pg.70]    [Pg.76]    [Pg.78]    [Pg.241]    [Pg.243]    [Pg.392]    [Pg.793]    [Pg.654]    [Pg.1043]    [Pg.1047]    [Pg.319]    [Pg.432]    [Pg.989]    [Pg.1166]    [Pg.1335]    [Pg.272]    [Pg.390]    [Pg.589]   
See also in sourсe #XX -- [ Pg.148 ]

See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.8 , Pg.153 , Pg.154 ]

See also in sourсe #XX -- [ Pg.8 , Pg.153 , Pg.154 ]

See also in sourсe #XX -- [ Pg.243 , Pg.249 , Pg.309 ]

See also in sourсe #XX -- [ Pg.387 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



5-Hexenoic acid, 3- iodolactonization

A-iodolactone

Allylic carbonates, iodolactonization

Carboxylic acids iodolactonization

Electrophilic addition iodolactonization

Iodolactone 842 Subject

Iodolactones

Iodolactones

Iodolactones allylation

Iodolactonization

Iodolactonization

Iodolactonization alcohols

Iodolactonization enantioselective synthesis

Iodolactonization epoxide synthesis

Iodolactonization examples

Iodolactonization lactone synthesis

Iodolactonization oxidative cleavage

Iodolactonization removal

Lactone iodolactones

Reactions iodolactonization

Stereoselectivity iodolactonization

Stereospecificity iodolactonization

© 2024 chempedia.info