Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity Diels-Alder reactions

Keywords sulfoxides, /refera-Diels-Alder reaction, stereoselectivity, sulfoxide mediator... [Pg.305]

Bloch R., Mandville G. Novel Strategies for the Use of Retro Diels-Alder Reactions in Stereoselective Synthesis Recent Res. Dev. Org. Chem. 1998 2 441-452 Keywords retro-Diels-Alder reactions, stereoselective synthesis... [Pg.307]

Keywords chiral boron reagents, Diels-Alder reaction, stereoselective... [Pg.320]

Lopez J. C., Lukacs G. Pyranose-Derived Dienes and Conjugated Enals. Preparation and Diels-Alder Cycloaddition Reactions ACS Symp. Ser. 1992 494 33-49 Keywords carbohydrate, befera-Diels-Alder reactions, stereoselectivity... [Pg.321]

The Stereoselectivity of 1,3-Dipolar Cycloadditions. There is no endo mle for 1,3-dipolar cycloadditions like that for Diels-Alder reactions. Stereoselectivity, more often than not, is low, as shown by the reactions of C,/V-diphenylnitrone—both regioisomers 6.238 and 6.239 (R=C02Et) from the reaction with ethyl acrylate are mixtures of exo and endo isomers, only a little in favour of the exo product. Similarly, the reactions of methyl crotonate with nitrones favour the exo product 6.242 over the endo 6.243. In contrast, other reactions are endo selective, as in the cycloaddition 6.244 of an azomethine ylid to dimethyl maleate giving largely the endo adduct 6.245. [Pg.252]

Palladium-complex-promoted asymmetric Diels-Alder reaction stereoselective synthesis of a new sulfinyl-substituted phosphine ligand containing three carbon, one phosphorus and one sulfur stereogenic centres <95CC1747>. [Pg.856]

Shishido, K., T. Saitoh, and R. Fukumoto A New Synthetic Approach to Bruceantin via an Intramolecular Diels-Alder Reaction Stereoselective Construction of the Pentacyclic Model System. J. Chem. Soc. Perkin Trans I, 2139 (1984). [Pg.264]

Synthesis Assuming the usual stereoselectivity for the Diels-Alder reaction and for the hydroxylation ... [Pg.48]

Note that the stereochemistry comes out right. H s a and b are cis because they were cis in the starting quinone and the Diels-Alder reaction is stereospecific in this respect. H is also cis to and H " because the Diels-Alder reaction is stereoselectively endo. These points are described in more detail in Norman p.284-6 and explained in Ian Fleming Frontier Orbitals and Organic Chemical Reactions, Wiley 1976, p. 106-109. How would you make diene A ... [Pg.70]

Two approaches to convergent steroid syntheses are based on the thermal opening of benzocyclobutenes to the o-quinodimethane derivatives (see p. 80 W. Oppolzer, 1978 A) and their stereoselective intramolecular Diels-Alder cyclizations. T, Kametani (1977 B, 1978) obtained (+ )-estradiol in a six-step synthesis. The final Diels-Alder reaction occurred regio- and stereoselectively in almost quantitative yield, presumably because the exo transition state given below is highly favored over the endo state in which rings A and D would stcrically inter-... [Pg.280]

In Diels-Alder reactions a nitroolefin may function as an electron-deficient ene com-onent or a 1,2-dihydropyridine derivative may be used as a diene component. Both types of iactants often yield cyclic amine precursors in highly stereoselective manner (R.K. Hill, 1962 i. BOchi, 1965, 1966A). [Pg.297]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

Aqueous hydrofluoric acid dissolved in acetonitrile is a good catalyst for intramolecular Diels-Alder reactions [9] This reagent promotes highly stereoselective cyclizations of different triene esters (equation 8) The use of other acids, such as hydrochloric, acetic, and trifluoroacetic acid, results in complete polymerization of the starting trienes [9] (equation 8)... [Pg.943]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

We are now able to understand the Lewis acid-catalyzed normal electron-demand carbo-Diels-Alder reaction from a theoretical point of view. The calculated influence of the Lewis acids on the reaction rate, regio- and stereoselectivity in an... [Pg.313]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

The use of catalysts for a Diels-Alder reaction is often not necessary, since in many cases the product is obtained in high yield in a reasonable reaction time. In order to increase the regioselectivity and stereoselectivity (e.g. to obtain a particular endo- or exo-product), Lewis acids as catalysts (e.g. TiCU, AICI3, BF3-etherate) have been successfully employed." The usefulness of strong Lewis acids as catalysts may however be limited, because they may also catalyze polymerization reactions of the reactants. Chiral Lewis acid catalysts are used for catalytic enantioselective Diels-Alder reactions. ... [Pg.93]

Numerous examples of intramolecular Diels-Alder reactions have been repor-ted especially from application in the synthesis of natural products, where stereoselectivity is of particular importance e.g. syntheses of steroids. " ... [Pg.94]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

Based on the facile formation and reactivity of323, and the retro Diels-Alder reaction of 325306,310, a simple procedure has been developed for the stereoselective synthesis of functionalized conjugated dienes as well as vinylallenes311 (see equation 119). [Pg.464]

A highly efficient construction of the steroidal skeleton 166 is reported by Kametani and coworkers111 in the intramolecular Diels-Alder reaction of the a, jS-unsaturated sulfone moiety of 165 (equation 117). Thus, when the sulfone 165 is heated in 1,2-dichlorobenzene for 6h, the steroidal compound 166 can be obtained in 62% yield. The compound 166 produces estrone (167) by elimination of benzenesulfinic acid and subsequent hydrogenation of the formed double bond. The stereoselectivity of the addition reflects a transition state in which the p-tosyl group occupies the exo position to minimize the steric repulsion between methyl and t-butoxy groups and the o-quinodimethane group as shown in equation 117. [Pg.799]

It has been established that alkoxy alkenylcarbene complexes participate as dienophiles in Diels-Alder reactions not only with higher rates but also with better regio- and stereoselectivities than the corresponding esters [95]. This is clearly illustrated in Scheme 51 for the reactions of an unsubstituted vinyl complex with isoprene. This complex reacts to completion at 25 °C in 3 h whereas the cycloaddition reaction of methyl acrylate with isoprene requires 7 months at the same temperature. The rate enhancement observed for this complex is comparable to that for the corresponding aluminium chloride-catalysed reactions of methyl acrylate and isoprene (Scheme 51). [Pg.94]

Carbene complexes which have an all-carbon tether between the diene and the dienophile react via intramolecular Diels-Alder reaction to give the corresponding bicyclic compound. The stereoselectivities of these reactions are comparable to those observed for the Lewis acid-catalysed reactions of the corresponding methyl esters and much higher than those of the thermal reactions of the methyl esters which are completely unselective. Moreover, the ris-sub-stituted complexes undergo endo-selective reactions where the corresponding reaction of the ester fails [109] (Scheme 61). [Pg.100]

Anionic Diels-Alder reactions have been studied less extensively with the interest having been focused mainly on the cycloaddition of enolates of a,/l-unsaturated ketones with electron-poor olefins [24] (Equations 1.8 and 1.9). These reactions are fast and stereoselective and can be regarded as a sequential double Michael condensation, but a mechanism involving a Diels-Alder cycloaddition seems to be preferred [24b,f, 25]. [Pg.7]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

This chapter will mostly deal with the applications of the Lewis-acid-catalyzed Diels Alder reaction to organic synthesis and the influence of Lewis acids on reactivity, stereoselectivity and regioselectivity of the cycloadditions. [Pg.100]

Dimethoxyethylacrylate (94) may be readily converted into the cationic species 95 by the action of Lewis acids [92] (Equation 3.32) the cationic species then undergoes Diels Alder reaction with a variety of dienes. The type of catalyst markedly affects the reaction yield, stereoselectivity and regioselectivity as shown in Scheme 3.19 and Equation 3.33. [Pg.128]

Micellar medium has received great attention because it solubilizes, concentrates and orientates the reactants within the micelle core and in this way accelerates the reaction and favors the regio- and stereoselectivity of the process [68], In addition the micellar medium is cheap, can be reused, is more versatile than cyclodextrins and more robust than enzymes. With regard to Diels Alder reactions, we may distinguish between (i) those in which one or both reagents are surfactants which make up the micellar medium, and (ii) those that are carried out in a micellar medium prepared by a suitable surfactant. [Pg.174]


See other pages where Stereoselectivity Diels-Alder reactions is mentioned: [Pg.284]    [Pg.284]    [Pg.85]    [Pg.92]    [Pg.318]    [Pg.21]    [Pg.27]    [Pg.303]    [Pg.78]    [Pg.78]    [Pg.272]    [Pg.663]    [Pg.664]    [Pg.304]    [Pg.346]    [Pg.51]    [Pg.56]    [Pg.110]    [Pg.149]    [Pg.178]    [Pg.184]   
See also in sourсe #XX -- [ Pg.638 ]

See also in sourсe #XX -- [ Pg.198 , Pg.349 ]

See also in sourсe #XX -- [ Pg.198 , Pg.349 ]

See also in sourсe #XX -- [ Pg.334 ]

See also in sourсe #XX -- [ Pg.198 , Pg.349 ]

See also in sourсe #XX -- [ Pg.655 ]

See also in sourсe #XX -- [ Pg.224 , Pg.304 , Pg.851 ]

See also in sourсe #XX -- [ Pg.933 , Pg.934 , Pg.935 , Pg.936 , Pg.937 , Pg.938 , Pg.939 , Pg.940 ]

See also in sourсe #XX -- [ Pg.188 ]

See also in sourсe #XX -- [ Pg.334 ]

See also in sourсe #XX -- [ Pg.638 ]

See also in sourсe #XX -- [ Pg.284 , Pg.285 ]




SEARCH



Diels stereoselective

Diels-Alder reactions stereoselection

Reaction stereoselectivity

Stereoselective reactions

Stereoselective reactions Diels-Alder reaction

© 2024 chempedia.info