Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine strong

McjC = CHCOCH3. Colourless liquid b.p. 129"C, with a strong peppermint-like odour. Prepared by distilling diacetone alcohol in the presence of a trace of iodine. Converted to phorone by heating in propanone with dehydrating agents such as sulphuric acid. It is a solvent For cellulose acetate and ethyl-cellulose and other polymers. [Pg.255]

The presence of chloric(I) acid makes the properties of chlorine water different from those of gaseous chlorine, just as aqueous sulphur dioxide is very different from the gas. Chloric(I) acid is a strong oxidising agent, and in acid solution will even oxidise sulphur to sulphuric acid however, the concentration of free chloric(I) acid in chlorine water is often low and oxidation reactions are not always complete. Nevertheless when chlorine bleaches moist litmus, it is the chloric(I) acid which is formed that produces the bleaching. The reaction of chlorine gas with aqueous bromide or iodide ions which causes displacement of bromine or iodine (see below) may also involve the reaction... [Pg.323]

Only chlorine forms a -t-3 acid, HCIO2. This is also a weak acid and is unstable. The - -5 acids, HXO3, are formed by chlorine, bromine and iodine they are strong acids. They are stable compounds and all are weaker oxidising agents than the corresponding +1 acids. [Pg.337]

This solution may also be employed in the test for bromine. If iodine has been found, add small amounts of sodium nitrite solution, warm shghtly and shake with fresh 1 ml. portions of carbon tetrachloride until the last extract is colourless boil the acid solution until no more nitrous fumes are evolved and cool. If iodine is absent, use 1 ml. of the fusion solution which has been strongly acidified with glacial acetic acid. Add a small amount of lead dioxide, place a strip of fluorescein paper across the mouth of the tube, and warm the solution. If bromine is present, it will colour the test paper rose-pink (eosin). [Pg.1042]

The majority of preparative methods which have been used for obtaining cyclopropane derivatives involve carbene addition to an olefmic bond, if acetylenes are used in the reaction, cyclopropenes are obtained. Heteroatom-substituted or vinyl cydopropanes come from alkenyl bromides or enol acetates (A. de Meijere, 1979 E. J. Corey, 1975 B E. Wenkert, 1970 A). The carbenes needed for cyclopropane syntheses can be obtained in situ by a-elimination of hydrogen halides with strong bases (R. Kdstcr, 1971 E.J. Corey, 1975 B), by copper catalyzed decomposition of diazo compounds (E. Wenkert, 1970 A S.D. Burke, 1979 N.J. Turro, 1966), or by reductive elimination of iodine from gem-diiodides (J. Nishimura, 1969 D. Wen-disch, 1971 J.M. Denis, 1972 H.E. Simmons, 1973 C. Girard, 1974),... [Pg.74]

However, because of the avoided crossing of the potential energy curves the wave functions of Vq and Fi are mixed, very strongly at r = 6.93 A and less strongly on either side. Consequently, when the wave packet reaches the high r limit of the vibrational level there is a chance that the wave function will take on sufficient of the character of Na + 1 that neutral sodium (or iodine) atoms may be detected. [Pg.390]

Solutions of alkah metal and ammonium iodides in Hquid iodine are good conductors of electricity, comparable to fused salts and aqueous solutions of strong acids. The Hquid is therefore a polar solvent of considerable ionising power, whereas its own electrical conductivity suggests that it is appreciably ionized, probably into I" and I (triodide). Iodine resembles water in this respect. The metal iodides and polyiodides are bases, whereas the iodine haHdes are acids. [Pg.360]

However, in strong hydrochloric acid, these reagents, as weU as iodic acid, oxidize iodine to iodine monochloride or to the ICl ion. [Pg.361]

The crystallized iodine is decanted and transferred into a fusion kettie. The melted product is contacted with strong sulfuric acid to remove organic impurities and humidity. Finally the iodine is flaked or prilled and packed. [Pg.363]

The quantitative conversion of thiosulfate to tetrathionate is unique with iodine. Other oxidant agents tend to carry the oxidation further to sulfate ion or to a mixture of tetrathionate and sulfate ions. Thiosulfate titration of iodine is best performed in neutral or slightly acidic solutions. If strongly acidic solutions must be titrated, air oxidation of the excess of iodide must be prevented by blanketing the solution with an inert gas, such as carbon dioxide or... [Pg.364]

Iodine monochloride [7790-99-0] ICl, mol wt 162.38, 78.16% I, is a black crystalline soHd or a reddish brown Hquid. SoHd ICl exists ia two crystalline modifications the a-form, as stable mby-red needles, d = 3.86 g/mL and mp 27.3°C and as metastable brownish red platelets, d = 3.66 g/mL, mp 13.9°C and bp 100°C (dec). Iodine monochloride is used as a halogenation catalyst and as an analytical reagent (Wij s solution) to determine iodine values of fats and oils (see Fats and fatty oils). ICl is prepared by direct reaction of iodine and Hquid chlorine. Aqueous solutions ate obtained by treating a suspension of iodine ia moderately strong hydrochloric acid with chlorine gas or iodic acid (118,119). [Pg.366]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

The first-order decomposition rates of alkyl peroxycarbamates are strongly influenced by stmcture, eg, electron-donating substituents on nitrogen increase the rate of decomposition, and some substituents increase sensitivity to induced decomposition (20). Alkyl peroxycarbamates have been used to initiate vinyl monomer polymerizations and to cure mbbers (244). They Hberate iodine quantitatively from hydriodic acid solutions. Decomposition products include carbon dioxide, hydrazo and azo compounds, amines, imines, and O-alkyUiydroxylarnines. Many peroxycarbamates are stable at ca 20°C but decompose rapidly and sometimes violently above 80°C (20,44). [Pg.131]

Phosphonic acid and hydrogen phosphonates are used as strong but slow-acting reducing agents. They cause precipitation of heavy metals from solutions of their salts and reduce sulfur dioxide to sulfur, and iodine to iodide in neutral or alkaline solution. [Pg.374]

Organoacyloxysdanes are also produced by reaction of organosdanes with carboxyUc acids in the presence of strong mineral acids, eg, sulfuric and hydroiodic acids. TriaLkylacyloxysilanes have been obtained in 81—87% yield from monocarboxyUc acids in the presence of aluminum and iodine. [Pg.27]

Aromatic Ring Reactions. In the presence of an iodine catalyst chlorination of benzyl chloride yields a mixture consisting mostly of the ortho and para compounds. With strong Lewis acid catalysts such as ferric chloride, chlorination is accompanied by self-condensation. Nitration of benzyl chloride with nitric acid in acetic anhydride gives an isomeric mixture containing about 33% ortho, 15% meta, and 52% para isomers (27) with benzal chloride, a mixture containing 23% ortho, 34% meta, and 43% para nitrobenzal chlorides is obtained. [Pg.59]

Diaziridines are also very strong oxidizing agents, even liberating chlorine from hydrochloric acid. The reaction with iodide in acidic solution proceeds almost quantitatively in most cases. The two equivalents of iodine obtained from a diaziridine (151) are of analytical value together with the number of acid equivalents consumed (B-67MI50800). [Pg.217]

The assumed form of iodine is not substantially retained in early containment failure, but may be retained in the reactor coolant system, where cesium iodide is more strongly retained than the elemental iodine assumed by the RSS. [Pg.316]


See other pages where Iodine strong is mentioned: [Pg.783]    [Pg.183]    [Pg.783]    [Pg.183]    [Pg.218]    [Pg.219]    [Pg.2752]    [Pg.27]    [Pg.243]    [Pg.333]    [Pg.98]    [Pg.127]    [Pg.129]    [Pg.343]    [Pg.388]    [Pg.96]    [Pg.388]    [Pg.298]    [Pg.335]    [Pg.189]    [Pg.332]    [Pg.390]    [Pg.64]    [Pg.403]    [Pg.201]    [Pg.205]    [Pg.339]    [Pg.469]    [Pg.83]    [Pg.1639]    [Pg.545]    [Pg.476]    [Pg.481]    [Pg.482]   
See also in sourсe #XX -- [ Pg.314 , Pg.342 , Pg.783 ]




SEARCH



© 2024 chempedia.info