Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine characteristics

Amyloid.—When treated with concentrated sulphuric acid cellulose dissolves and undergoes hydrolysis. If the solution is diluted with water a gelatinous product is obtained which gives the blue color with iodine characteristic of starch. This product is known as amyloid. When boiled in the dilute acid the amyloid is hydrolyzed and dextrin and finally glucose are obtained. Concentrated hydrofluoric acid and phosphoric acid also dissolve cellulose. With glacial acetic acid in the presence of acetic anhydride and sulphuric acid cellulose yields acetyl derivatives indicating its alcoholic character. From the products of this reaction the acetate of a di-saccharose is obtained. [Pg.368]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

Microscope appearance. Place a small amount of dry starch on a microscope slide, add a drop of water, cover with a slip and examine under the microscope. Characteristic oval grains are seen which have concentric rings round a hilum which is towards one end of the grain. Run a drop of very dilute iodine solution under the slip from a fine dropping-tube the grains become blue. [Pg.370]

Iodine compounds are important in organic chemistry and very useful in medicine. Iodides, and thyroxine which contains iodine, are used internally in medicine, and as a solution of KI and iodine in alcohol is used for external wounds. Potassium iodide finds use in photography. The deep blue color with starch solution is characteristic of the free element. [Pg.123]

There should be specific, saturable binding to the receptor, accompanied by pharmacological characteristics appropriate to the functional effects, demonstrable using a radioactive, eg, tritium or iodine-125, ligand to label the receptor. Radioligand binding assays (1,6) have become a significant means by which to identify and characterize receptors and enzymes (see Immunoassays Radioactive tracers). Isolation of the receptor or expression of the receptor in another cell, eg, an oocyte can be used to confirm the existence of a discrete entity. [Pg.517]

To analy2e fatty amines, both wet and instmmental methods of analysis are used. Wet methods routinely used are total amine value (ASTM Method D2073) combining weight or neutralization equivalent primary, secondary, and tertiary amine content (ASTM Method D2083) moisture, Kad-Fischer (ASTM Method D2072) and iodine value, measure of unsaturation (ASTM Method D2075). These provide important information on physical and chemical characteristics of the amine products used in various appHcation areas (8,76,81). In addition to the ASTM methods available, the American Oil Chemists Society has developed methods of analysis for fatty amines (82). [Pg.223]

PuUy hydroly2ed poly(vinyl alcohol) and iodine form a complex that exhibits a characteristic blue color similar to that formed by iodine and starch (171—173). The color of the complex can be enhanced by the addition of boric acid to the solution consisting of iodine and potassium iodide. This affords a good calorimetric method for the deterrnination of poly(vinyl alcohol). Color intensity of the complex is effected by molecular weight, degree of... [Pg.481]

An important chemical characteristic of unsaturated acids is the iodine value (IV), which indicates the average degree of unsaturation. It is equal to the number of grams of iodine absorbed under standard conditions by 100 g of the unsaturated acid. [Pg.83]

At 225—275°C, bromination of the vapor yields bromochloromethanes CCl Br, CCl2Br2, and CClBr. Chloroform reacts with aluminum bromide to form bromoform, CHBr. Chloroform cannot be direcdy fluorinated with elementary flourine fluoroform, CHF, is produced from chloroform by reaction with hydrogen fluoride in the presence of a metallic fluoride catalyst (8). It is also a coproduct of monochlorodifluoromethane from the HF—CHCl reaction over antimony chlorofluoride. Iodine gives a characteristic purple solution in chloroform but does not react even at the boiling point. Iodoform, CHI, may be produced from chloroform by reaction with ethyl iodide in the presence of aluminum chloride however, this is not the route normally used for its preparation. [Pg.524]

Chemical Designations - Synonyms Cuprous Iodine Marshite Chemical Formula Cul. Ohservahle Characteristics - Pfo .rfca/State (as normally shipped) Solid Color Beige Odor. None. Physical and Chemical Properties - Physical State at 15 and I atm. Solid Molecular Weight 190.4 Boiling Point at I atm. 2,354, 1,290, 1,563 Freezing Point 1,121, 605, 878 Critical Temperature Not pertinent Critical Pressure Not pertinent Specific Gravity 5.62 at 20°C (solid) Vapor (Gas) Density Not pertinent Rtuio cf Specific Heats of Vapor (Gas) Not pertinent Latent Heat of Vaporization Not pertinent Heat cf Combustion Not pertinent Heat cf Decomposition Not pertinent. [Pg.93]

Nicotine may be detected by the colourless, crystalline mercurichloride obtained when an aqueous solution is added to a solution of mercuric chloride, by the black precipitate formed under similar conditions with potassium platinic iodide and the characteristic crystalline periodide, BI2. HI, m.p. 123°, produced on admixture, under specified conditions, 2 of ethereal solutions of nicotine and iodine (cf Anabasine, p. 43). A polarographic study of nicotine has been made by Kirkpatrick. ... [Pg.37]

The molecular uniformity of constituting components of a nb/lcb glucan fraction of potato starch was investigated with Sepharose CL 2B (Fig. 16.16) as well as with Sephacryl S-1000 (Fig. 16.17). Therefore, each of the subsequently eluted 3-ml fractions was analyzed on their potential to form inclusion complexes with iodine, a sensitive test for the presence of nb/lcb glucans. Results are shown in Fig. 16.17 in terms of branching index, the ratio of extinction of pure iodine solution and of nb/lcb glucan/iodine complex the higher the index, the more pronounced the nb/lcb characteristics. [Pg.480]

FIGURE 7.22 Suspensions of amylose in water adopt a helical conformation. Iodine (b) can insert into the middle of the amylose helix to give a bine color that is characteristic and diagnostic for starch. [Pg.228]

The most characteristic property of the oxaziranes is tlieir strong oxidizing character which is approximately equal to that of hydrogen peroxide. Oxaziranes react with hydrochloric acid the chlorine thus liberated is, however, used up in secondary reactions. " Two equivalents of iodine are formed from acid iodide solutions according to Eq. Titration of the free iodine allows a simple estimation of... [Pg.92]

A few- reagents react with the N—-H groups of the diaziridines. It is easy to decide w hether the resulting compounds still contain a true diaziridine ring by testing for the characteristic property of such rings to liberate from iodide solution two equivalents of iodine. [Pg.112]

The cyclic diazo compounds (diazirines 65) are very unreactive compounds. Specially noticeable is the absence of the reactivity toward electrophilic reagents which is characteristic of the linear isomers. Acids or aldehydes which react smoothly with the aliphatic diazo compounds are without action on the cyclic diazo compounds. Iodine does not attack the cyclic diazo compounds. [Pg.126]

These and similar results can be explained if the simultaneous reduction of hydrogen peroxide is due to an induced reaction. To show the characteristic features of this reaction some results are presented in Table 19 and Table 20. The procedure for these measurements was as follows. The solution of peroxy compounds given in columns 1 and 2 was made up to 20 ml and the pH was adjusted to the given value. Then potassium thiocyanate solution was added and, after the reaction time noted, the process was quenched by adding potassium iodide solution (0.3 g KI). After 5 sec the solution was acidified with 1 ml 2 iV sulphuric acid then using, molybdate catalyst solution, the iodine liberated was titrated with standard thiosulphate. [Pg.569]


See other pages where Iodine characteristics is mentioned: [Pg.313]    [Pg.313]    [Pg.261]    [Pg.1960]    [Pg.513]    [Pg.32]    [Pg.358]    [Pg.366]    [Pg.460]    [Pg.341]    [Pg.245]    [Pg.54]    [Pg.403]    [Pg.24]    [Pg.579]    [Pg.405]    [Pg.163]    [Pg.228]    [Pg.794]    [Pg.157]    [Pg.187]    [Pg.401]    [Pg.201]    [Pg.617]    [Pg.354]    [Pg.100]    [Pg.146]    [Pg.249]    [Pg.272]    [Pg.334]    [Pg.231]    [Pg.11]    [Pg.152]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Iodine principal characteristics

© 2024 chempedia.info