Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Introduction molecules

As mentioned in the Introduction, molecule-based systems must meet several, apparently necessary, but certainly not sufficient criteria for exhibiting a semiconducting or metal-like behavior ... [Pg.406]

As mentioned in the introduction, molecules from a number of different classes of herbicides are PS II inhibitors. A theoretical analysis has been carried out to isolate the molecular properties shared by all active PS II herbicides (36). [Pg.28]

Mass spectrometry allows analysis by hydrocarbon family for a variety of petroleum cuts as deep as vacuum distillates since we have seen that the molecules must be vaporized. The study of vacuum residues can be conducted by a method of direct introduction which we will address only briefly because the quantitative aspects are ek r metiy difficult to master. Table 3.6 gives some examples the matrices used differ according to the distillation cut and the chemical content such as the presence or absence of olefins or sulfur. [Pg.50]

The introduction of low quantities of surfactants (50 to 125 ppm) helps solve these two problems. The surfactant molecule has a lipophilic organic tail and a polar head that is adsorbed selectively on the metal walls of the admission system. These products have a double action ... [Pg.347]

The purpose of this chapter is to provide an introduction to tlie basic framework of quantum mechanics, with an emphasis on aspects that are most relevant for the study of atoms and molecules. After siumnarizing the basic principles of the subject that represent required knowledge for all students of physical chemistry, the independent-particle approximation so important in molecular quantum mechanics is introduced. A significant effort is made to describe this approach in detail and to coimnunicate how it is used as a foundation for qualitative understanding and as a basis for more accurate treatments. Following this, the basic teclmiques used in accurate calculations that go beyond the independent-particle picture (variational method and perturbation theory) are described, with some attention given to how they are actually used in practical calculations. [Pg.4]

Karplus M and Porter R N 1970 Atoms and Molecules an Introduction for Students of Physical Chemistry (Reading, MA Addison-Wesley)... [Pg.52]

As described at the end of section Al.6.1. in nonlinear spectroscopy a polarization is created in the material which depends in a nonlinear way on the strength of the electric field. As we shall now see, the microscopic description of this nonlinear polarization involves multiple interactions of the material with the electric field. The multiple interactions in principle contain infomiation on both the ground electronic state and excited electronic state dynamics, and for a molecule in the presence of solvent, infomiation on the molecule-solvent interactions. Excellent general introductions to nonlinear spectroscopy may be found in [35, 36 and 37]. Raman spectroscopy, described at the end of the previous section, is also a nonlinear spectroscopy, in the sense that it involves more than one interaction of light with the material, but it is a pathological example since the second interaction is tlirough spontaneous emission and therefore not proportional to a driving field... [Pg.252]

Theories based on the solution to integral equations for the pair correlation fiinctions are now well developed and widely employed in numerical and analytic studies of simple fluids [6]. Furtlier improvements for simple fluids would require better approximations for the bridge fiinctions B(r). It has been suggested that these fiinctions can be scaled to the same fiinctional fomi for different potentials. The extension of integral equation theories to molecular fluids was first accomplished by Chandler and Andersen [30] through the introduction of the site-site direct correlation fiinction c r) between atoms in each molecule and a site-site Omstein-Zemike relation called the reference interaction site... [Pg.480]

Hutson J M 1990 Intermolecular forces from the spectroscopy of Van der Waals molecules Ann. Rev. Phys. Chem. 41 123-54 Huston J M 1991 An introduction to the dynamics of Van der Waals molecules Adv. Mol. Vibrat. Coll. Dyn. 1A 1-45... [Pg.2455]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]

As was said in the introduction (Section 2.1), chemical structures are the universal and the most natural language of chemists, but not for computers. Computers woi k with bits packed into words or bytes, and they perceive neither atoms noi bonds. On the other hand, human beings do not cope with bits very well. Instead of thinking in terms of 0 and 1, chemists try to build models of the world of molecules. The models ai e conceptually quite simple 2D plots of molecular sti uctures or projections of 3D structures onto a plane. The problem is how to transfer these models to computers and how to make computers understand them. This communication must somehow be handled by widely understood input and output processes. The chemists way of thinking about structures must be translated into computers internal, machine representation through one or more intermediate steps or representations (sec figure 2-23, The input/output processes defined... [Pg.42]

The method for calculating effective polarizabilitie.s wa.s developed primarily to obtain values that reflect the stabilizing effect of polarizability on introduction of a charge into a molecule. That this goal was reached was proven by a variety of correlations of data on chemical reactivity in the gas phase with effective polarizability values. We have intentionally chosen reactions in the gas phase as these show the predominant effect of polarizability, uncorrupted by solvent effects. [Pg.334]

The classical introduction to molecular mechanics calculations. The authors describe common components of force fields, parameterization methods, and molecular mechanics computational methods. Discusses th e application of molecular mechanics to molecules comm on in organic,and biochemistry. Several chapters deal w ith thermodynamic and chemical reaction calculations. [Pg.2]

The physical, chemical cind biological properties of a molecule often depend critically upo the three-dimensional structures, or conformations, that it can adopt. Conformational analysi is the study of the conformations of a molecule and their influence on its properties. Th development of modem conformational analysis is often attributed to D H R Bcirton, wh showed in 1950 that the reactivity of substituted cyclohexanes wcis influenced by th equatoricil or axial nature of the substituents [Beirton 1950]. An equcilly important reaso for the development of conformatiorml analysis at that time Wcis the introduction c analytic il techniques such as infreired spectroscopy, NMR and X-ray crystaillograph] which actucilly enabled the conformation to be determined. [Pg.473]

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare s text on angular momentum. [Pg.360]

This completes our introduction to the subject of molecular spectroscopy. More advanced treatments of many of the subjects treated here as well as many aspects of modern experimental spectroscopy can be found in the text by Zare on angular momentum as well as in Steinfeld s text Molecules and Radiation, 2 Edition, by J. I. Steinfeld, MIT Press (1985). [Pg.440]

Recently Desimoni et used the same bis(oxazoline) ligand in the magnesium(II) catalysed Diels-Alder reaction of the N-acyloxazolidinone depicted in Scheme 3.4. In dichloromethane a modest preference was observed for the formation of the S-enantiomer. Interestingly, upon addition of two equivalents of water, the R-enantiomer was obtained in excess. This remarkable observation was interpreted in terms of a change from tetrahedral to octahedral coordination upon the introduction of the strongly coordinating water molecules. [Pg.81]

M. Karplus, R. N. Porter, Atoms Molecules An Introduction For Students of Physical Chemistry W. A. Benjamine, Menlo Park, (1970). [Pg.40]

DREIDING is an all-purpose organic or bio-organic molecule force field. It has been most widely used for large biomolecular systems. It uses five valence terms, one of which is an electrostatic term. The use of DREIDING has been dwindling with the introduction of improved methods. [Pg.54]

This is an introduction to the techniques used for the calculation of electronic excited states of molecules (sometimes called eximers). Specifically, these are methods for obtaining wave functions for the excited states of a molecule from which energies and other molecular properties can be calculated. These calculations are an important tool for the analysis of spectroscopy, reaction mechanisms, and other excited-state phenomena. [Pg.216]


See other pages where Introduction molecules is mentioned: [Pg.684]    [Pg.684]    [Pg.68]    [Pg.33]    [Pg.842]    [Pg.1063]    [Pg.1949]    [Pg.2334]    [Pg.2354]    [Pg.2709]    [Pg.2816]    [Pg.41]    [Pg.220]    [Pg.255]    [Pg.400]    [Pg.451]    [Pg.475]    [Pg.270]    [Pg.152]    [Pg.51]    [Pg.91]    [Pg.568]    [Pg.11]    [Pg.22]    [Pg.726]    [Pg.149]    [Pg.22]    [Pg.152]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Asymmetric Top Molecules Introduction

Introduction of Photofunctional Molecules

Introduction to Organic Molecules and Functional Groups

Key Concepts—Introduction to Organic Molecules and Functional Groups

Methods for Introduction of Fluorine-Functionality into Molecules

Symmetric Top Molecules Introduction

© 2024 chempedia.info