Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intrinsic rates/kinetics

The effectiveness factor is a parameter that determines how much the intrinsic rate (kinetic control) is affected by diffusion hmitations. Therefore, this factor measures the deviation from the real kinetics in the presence of diffusion phenomena. According to Equation 18.1, the effectiveness factor is ... [Pg.429]

Intrinsic rate = (Kinetic term) x (Driving force term)/(Adsorption term)... [Pg.2046]

In contrast, physical adsorption is a very rapid process, so the rate is always controlled by mass transfer resistance rather than by the intrinsic adsorption kinetics. However, under certain conditions the combination of a diffiision-controUed process with an adsorption equiUbrium constant that varies according to equation 1 can give the appearance of activated adsorption. [Pg.257]

When a relatively slow catalytic reaction takes place in a stirred solution, the reactants are suppHed to the catalyst from the immediately neighboring solution so readily that virtually no concentration gradients exist. The intrinsic chemical kinetics determines the rate of the reaction. However, when the intrinsic rate of the reaction is very high and/or the transport of the reactant slow, as in a viscous polymer solution, the concentration gradients become significant, and the transport of reactants to the catalyst cannot keep the catalyst suppHed sufficientiy for the rate of the reaction to be that corresponding to the intrinsic chemical kinetics. Assume that the transport of the reactant in solution is described by Fick s law of diffusion with a diffusion coefficient D, and the intrinsic chemical kinetics is of the foUowing form... [Pg.161]

In the former case, the rate is independent of the diffusion coefficient and is determined by the intrinsic chemical kinetics in the latter case, the rate is independent of the rate constant k and depends on the diffusion coefficient the reaction is then diffusion controlled. This is a different kind of mass transport influence than that characteristic of a reactant from a gas to ahquid phase. [Pg.162]

Examples (10.1) and (10.2) used the fact that Steps 4, 5, and 6 must all proceed at the same rate. This matching of rates must always be true, and, as illustrated in the foregoing examples, can be used to derive expressions for the intrinsic reaction kinetics. There is another concept with a time-honored tradition in chemical engineering that should be recognized. It is the concept of rate-determining step or rate-controlling step. [Pg.357]

In any catalyst selection procedure the first step will be the search for an active phase, be it a. solid or complexes in a. solution. For heterogeneous catalysis the. second step is also deeisive for the success of process development the choice of the optimal particle morphology. The choice of catalyst morphology (size, shape, porous texture, activity distribution, etc.) depends on intrinsic reaction kinetics as well as on diffusion rates of reactants and products. The catalyst cannot be cho.sen independently of the reactor type, because different reactor types place different demands on the catalyst. For instance, fixed-bed reactors require relatively large particles to minimize the pressure drop, while in fluidized-bed reactors relatively small particles must be used. However, an optimal choice is possible within the limits set by the reactor type. [Pg.84]

Overlay between eurves plotted as rate vs. [substrate] reveals that the plots manifest the intrinsic reaction kinetics rate is not influenced... [Pg.453]

Chemical kinetics is an area that received perhaps most of the attention of chemical engineers from a parameter estimation point of view. Chemical engineers need mathematical expressions for the intrinsic rate of chemical reactions... [Pg.3]

In the design of an industrial scale reactor for a new process, or an old one that employs a new catalyst, it is common practice to carry out both bench and pilot plant studies before finalizing the design of the commercial scale reactor. The bench scale studies yield the best information about the intrinsic chemical kinetics and the associated rate expression. However, when taken alone, they force the chemical engineer to rely on standard empirical correlations and prediction methods in order to determine the possible influence of heat and mass transfer processes on the rates that will be observed in industrial scale equipment. The pilot scale studies can provide a test of the applicability of the correlations and an indication of potential limitations that physical processes may place on conversion rates. These pilot plant studies can provide extremely useful information on the temperature distribution in the reactor and on contacting patterns when... [Pg.246]

The reaction will then appear to follow first-order kinetics, regardless of the functional form of the intrinsic rate expression and of the effectiveness factor. This first-order dependence is characteristic of reactions that are mass transfer limited. The term diffusion controlled is often applied to reactions that occur under these conditions. [Pg.478]

The units on the rate constants reported by DeMaria et al. indicate that they are based on pseudo homogeneous rate expressions (i.e., the product of a catalyst bulk density and a reaction rate per unit mass of catalyst). It may be assumed that these relations pertain to the intrinsic reaction kinetics in the absence of any heat or mass transfer limitations. [Pg.559]

Cold flow studies have several advantages. Operation at ambient temperature allows construction of the experimental units with transparent plastic material that provides full visibility of the unit during operation. In addition, the experimental unit is much easier to instrument because of operating conditions less severe than those of a hot model. The cold model can also be constructed at a lower cost in a shorter time and requires less manpower to operate. Larger experimental units, closer to commercial size, can thus be constructed at a reasonable cost and within an affordable time frame. If the simulation criteria are known, the results of cold flow model studies can then be combined with the kinetic models and the intrinsic rate equations generated from the bench-scale hot models to construct a realistic mathematical model for scale-up. [Pg.318]

Formation of products in paraffin cracking reactions over acidic zeolites can proceed via both unimolecular and bimolecular pathways [4], Based on the analysis of the kinetic rate equations it was suggested that the intrinsic acidity shows better correlation with the intrinsic rate constant (kinl) of the unimolecular hexane cracking than with the apparent rate constant (kapp= k K, where K is the constant of adsorption equilibrium). In... [Pg.121]

Chen et al. [54] have reported a model for the assessment of the combined effects of the intrinsic reaction kinetics and dye diffusion into phosphorylated polyvinyl alcohol (PVA) gel beads. The analysis of the experimental data in terms of biofilm effectiveness factor highlighted the relevance of intraparticle diffusion to the effective azo-dye conversion rate. On the basis of these results, they have identified the optimal conditions for the gel bead diameter and PVA composition to limit diffusion resistance. [Pg.119]

The presence (or absence) of pore-diffusion resistance in catalyst particles can be readily determined by evaluation of the Thiele modulus and subsequently the effectiveness factor, if the intrinsic kinetics of the surface reaction are known. When the intrinsic rate law is not known completely, so that the Thiele modulus cannot be calculated, there are two methods available. One method is based upon measurement of the rate for differing particle sizes and does not require any knowledge of the kinetics. The other method requires only a single measurement of rate for a particle size of interest, but requires knowledge of the order of reaction. We describe these in turn. [Pg.208]

In a typical situation, as illustrated in Figure 24.3, the composition and flow rate of each feed stream (gas at the bottom and liquid at the top) are specified, directly or indirectly this enables evaluation of the quantities pAin, cAin, cB in, L, and G. The unknown quantities to be determined, in addition to h (or I, the packed volume), are Pa,out and c, our The determination involves use of the rate law developed in Section 9.2 for an appropriate kinetics regime (1) reaction in bulk liquid only (relatively slow intrinsic rate of reaction), or (2) in liquid film only (relatively fast reaction), or (3) in both bulk liquid and liquid film. For case (2), cA = 0 throughout the bulk liquid, and the equations developed below for the more general case (3), cA 0, are simplified accordingly. [Pg.604]

For a more detailed analysis of measured transport restrictions and reaction kinetics, a more complex reactor simulation tool developed at Haldor Topsoe was used. The model used for sulphuric acid catalyst assumes plug flow and integrates differential mass and heat balances through the reactor length [16], The bulk effectiveness factor for the catalyst pellets is determined by solution of differential equations for catalytic reaction coupled with mass and heat transport through the porous catalyst pellet and with a film model for external transport restrictions. The model was used both for optimization of particle size and development of intrinsic rate expressions. Even more complex models including radial profiles or dynamic terms may also be used when appropriate. [Pg.334]

Using the various simplifications above, we have arrived at a model for reaction 11.9 in which only one step, the chemical conversion occurring at the active site of the enzyme characterized by the rate constant k3, exhibits the kinetic isotope effect Hk3. From Equations 11.29 and 11.30, however, it is apparent that the observed isotope effects, HV and H(V/K), are not directly equal to this kinetic isotope effect, Hk3, which is called the intrinsic kinetic isotope effect. The complexity of the reaction may cause part or all of Hk3 to be masked by an amount depending on the ratios k3/ks and k3/k2. The first ratio, k3/k3, compares the intrinsic rate to the rate of product dissociation, and is called the ratio of catalysis, r(=k3/ks). The second, k3/k2, compares the intrinsic rate to the rate of the substrate dissociation and is called forward commitment to catalysis, Cf(=k3/k2), or in short, commitment. The term partitioning factor is sometimes used in the literature for this ratio of rate constants. [Pg.350]

The principal goal of most studies of kinetic isotope effects on enzymatic reactions is to deduce intrinsic rate constants, which, in turn, can be correlated with the geometric features, that is the structure, of the corresponding transition states. Formal kinetics provides several options for reaching this goal. For example, as we have seen above, changes in concentration can diminish the commitment to the point where the KIE experimental value corresponds directly to the intrinsic kinetic... [Pg.354]

A number of different approaches have been employed in different laboratories to characterize cyt c ccp binding. The earliest estimates of binding constants come from steady state kinetic studies by Yonetani and coworkers [19] (subsequently refined by Erman) [29]. At 50 mM phosphate, pH6, (conditions which favor maximum turnover), an apparent Km value of 3 pM is obtained using yeast isol cyt c as the reaetion partner of ccp. Km is intrinsically a kinetic parameter, which in the complex ccp mechanism may incorporate a number of elementary rate constants unrelated to binding. [Pg.170]

Laboratory data collected over honeycomb catalyst samples of various lengths and under a variety of experimental conditions were described satisfactorily by the model on a purely predictive basis. Indeed, the effective diffusivities of NO and NH3 were estimated from the pore size distribution measurements and the intrinsic rate parameters were obtained from independent kinetic data collected over the same catalyst ground to very fine particles [27], so that the model did not include any adaptive parameters. [Pg.401]

The optical rotation of the mixture approaches zero (a racemic mixture) over time, with apparent first-order kinetics. This observation was supported by the semi-log plot [ln(a°D/ aD) vs time], which is linear (Figure 1). It has been shown that this racemization process does in fact follow a true pseudo-first-order rate equation, the details of which have been described by Eliel.t30 Therefore, these processes can be described by the first-order rate constant associated with them, which reflects precisely the intrinsic rate of racemization. Comparison of the half-lives for racemization under conditions of varying amino acid side chain, base, and solvent is the basis for this new general method. [Pg.664]

The ratio of the enantiomeric benzyl amide products was determined by analyzing a diluted aliquot of the quenched reaction mixture by HPLC using a chiral stationary phase column (Chiralcel OD, Daicel Chemical Co.). Since racemization is a pseudo-first-order kinetic process, these data (along with the time zero value) are sufficient for determination of the intrinsic rate of racemization kR. The half-life for racemization lRU2 can be directly calculated from the l/d ratio (or % enantiomeric excess, %ee) where t was the time of benzylamine addition (the delay time) ... [Pg.665]

The UNCA methodology has been utilized to study the effect of the important parameters in peptide synthesis on the intrinsic rate of racemizationJ29 The results of these experiments reflect both thermodynamic and kinetic influences on reaction rates and products. Table 1 shows the effect of varying the amino acid side chain, while maintaining the nature of the base and solvent. [Pg.665]

The parameters that control epimerization in a peptide-bond-forming reaction can be assessed in terms of their thermodynamic and kinetic components. Thermodynamic effects are those that stabilize the deprotonated activated intermediate or the protonated tertiary amine. Kinetic effects are expressed based on the degree of steric hindrance between the tertiary amine and activated intermediate. Table 4 summarizes these contributions and shows examples of high, moderate, and low propensities for contribution to the intrinsic rate of racemization among the various parameters. [Pg.667]

A significant feature of physical adsorption is that the rate of the phenomenon is generally too high and consequently, the overall rate is controlled by mass (or heat transfer) resistance, rather than by the intrinsic sorption kinetics (Ruthven, 1984). Thus, sorption is viewed and termed in this book as a diffusion-controlled process. The same holds for ion exchange. [Pg.43]

Pure component in gas phase and saturated liquid phase First-order kinetics in A In this case, the gas phase is a pure component A (CAG is constant) and the liquid phase is considered to be saturated with A (C is constant). Furthermore, the intrinsic rate is considered to be of fust order with respect to A -rm = /cmCAS, per unit mass of catalyst. Under these conditions, the material balances for the gas component A in the gas and liquid phases (eqs. (3.365) and (3.367)) are not needed CAL is constant and equal to CAl q = CAG/HA. The same analysis is valid for reactions of fu st order for both components, if Cbl -> > Cal and thus CBS = const (pseudo-first order) (Smith, 1981). Then (eq. (3.369))... [Pg.449]


See other pages where Intrinsic rates/kinetics is mentioned: [Pg.515]    [Pg.172]    [Pg.365]    [Pg.367]    [Pg.226]    [Pg.339]    [Pg.246]    [Pg.439]    [Pg.454]    [Pg.490]    [Pg.36]    [Pg.90]    [Pg.8]    [Pg.374]    [Pg.11]    [Pg.17]    [Pg.79]    [Pg.726]    [Pg.264]    [Pg.227]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Intrinsic kinetic

Intrinsic kinetics

Intrinsic rate

Intrinsic reaction kinetics, rate expression

Kinetic rates

Rate Kinetics

© 2024 chempedia.info