Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramolecular cycloadditions nitronate stereoselectivity

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

In agreement with Schemes 2.211b and 2.211c, intramolecular cycloadditions of nitrones to 5-allyl- (Scheme 2.225) or 5-homoallylproline (Scheme 2.226), are fully regio- and stereoselective. These reactions are the key steps in the synthesis of functionalized azaoxobicyclo[X.3.0] alkane amino acids, mimics of a homoSer-Pro dipeptide (721). [Pg.307]

In a related strategy, the dihydropiperidine skeleton of the macrocyclic alkaloid cannabisativine (208) (Fig. 1.6), isolated from the leaves and roots of the common cannabis plant, was prepared with regio- and stereoselectivity using an intramolecular allylsilane-nitrone cycloaddition reaction as a key step (260). [Pg.37]

The combination of the geometrical preference of the tether and the stereochemical preference of the dipolarophile substituent can be seen in the intramolecular cycloadditions of alkyl nitronates, (Scheme 2.6) (99). When the tether is restricted to two atoms, only the endo approach of the tether is observed in up to a 100 1 ratio, independent of the configuration of the disubstituted dipolarophile. However, in the case of a three-atom linker, there exists a matched and mismatched case with respect to the observed stereoselectivities. With a (Z)-configured dipolarophile, only the exo isomer was observed since the ester moiety also approaches on the exo to the nitronate. However, with an ( )-configured dipolarophile, the ester group is forced to approach in an endo manner to accommodate an exo approach of the tether, thus leading to lower selectivity. [Pg.113]

TABLE 2.31. STEREOSELECTIVITY IN THE INTRAMOLECULAR CYCLOADDITION OF SILYL NITRONATES... [Pg.113]

The above dramatic dependence of regio- and stereoselectivity on the nature of the metal can be explained by the reaction mechanism shown in Scheme 11.49 (167). The nitrone cycloadditions of allylic alcohols are again magnesium-specific just like the nitrile oxide reactions described in Section 11.2.2. Magnesium ions accelerate the reaction through a metal ion-bound intramolecular cycloaddition path. On the other hand, zinc ions afford no such rate acceleration, but these ions catalyze the acetalization at the benzoyl carbonyl moiety of the nitrone to provide a hemiacetal intermediate. The subsequent intramolecular regio- and stereoselective cycloaddition reaction gives the observed products. [Pg.798]

Tamura et al. (170-172) discovered that, when reactions of ester-substituted nitrones with allylic alcohols are performed in the presence of an equimolar amount of titanium tetraisopropoxide under heating or at room temperature, transesterification takes place to form new nitrones bearing an inner alkene dipolarophile. The resulting nitrone substrates undergo regio- and stereoselective intramolecular cycloaddition reactions to give the ring-fused isoxazolidines (Scheme 11.52). This tandem transesterification/[3 + 2]-cycloaddition method leads to the selective... [Pg.801]

Cyclization of nitrile oxides with a four-atom intervening chain to the alkene always leads to 5,6-fused bicylic isoxazolines possessing a bridgehead C—N double bond. This is in contrast to nitrone cycliza-tions where competition to form bridged bicyclic isoxazolidines is observed. The alkenyl oximes (73) and (74) cyclize in typical fashion via nitrile oxide intermediates (Scheme 21).33a>36 The stereochemistry of cyclization here was studied both experimentally and by calculation. The higher stereoselectivity observed with the (Z)-alkene is typical. (Z)-Alkenes cycloadd much slower than ( >alkenes in intermole-cular reactions this is attributed to greater crowding in the transition state. Thus, intramolecular cycloaddition of (Z)-alkenes depends on a transition state that is heavily controlled by steric factors. [Pg.1126]

The 3 + 2-cycloaddition of nitrile oxides to 2-crotyl-l,3-dithiane 1-oxides produces exclusively 5-acyldihydroisoxazoles.92 Lewis acid addition to 1,3-dipole cycloaddition reactions of mesityl nitrile oxide with a, /i-unsaturated 2-acyl-1,3-dithiane 1-oxides can reverse the sense of induced stereoselectivity.93 The 1,3-dipolar cycloaddition of 4-t-butylbenzonitrile oxide with 6A-acrylainido-6A-deoxy-/i-cyclodextrin (68) in aqueous solution favours the formation of the 4-substituted isoxazoline (69) rather than the 5-substituted regioisomer (Scheme 24).94 Tandem intramolecular cycloadditions of silyl nitronate, synthons of nitrile oxides, yield functionalized hydrofurans.95... [Pg.441]

Intramolecular cycloaddition of fV-benzyl-substituted 3-O-allylhexose nitrones furnishes chiral oxepane derivatives. The regioselectivity of the cycloaddition depends on several factors such as (1) the structural nature of the nitrone, (2) substitution and stereochemistry at 3-C of the carbohydrate backbone, and (3) substitution at the terminus of the O-allyl moiety. A mixture of an oxepane and a pyran is formed in the intramolecular oxime olefin cycloaddition of a 3-O-allyl carbohydrate-derived oxime <2003T4623>. The highly stereoselective synthesis of oxepanes proceeds by intramolecular nitrone cycloaddition reactions on sugar-derived methallyl ethers <2003TA3899>. [Pg.79]

Intramolecular cycloadditions via nitrones as intermediates are generally highly stereoselective processes that are used to generate a number of stereocenters in a complex molecule3-5-6-8- 8. The intrinsic rigidity of the transition structures enhances the stereocontrol exerted by steric and stereoelectronic factors (see Section A.2.3.5.). Tor more recent examples of intramolecular cycloadditions via nitrones, see references 337-354. [Pg.760]


See other pages where Intramolecular cycloadditions nitronate stereoselectivity is mentioned: [Pg.692]    [Pg.297]    [Pg.301]    [Pg.32]    [Pg.153]    [Pg.103]    [Pg.106]    [Pg.1165]    [Pg.42]    [Pg.436]    [Pg.456]    [Pg.464]    [Pg.418]    [Pg.449]    [Pg.297]    [Pg.763]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 ]

See also in sourсe #XX -- [ Pg.112 , Pg.113 ]




SEARCH



1,3-cycloaddition intramolecular

Cycloaddition stereoselection

Intramolecular cycloadditions nitrones/nitronates

Intramolecular cycloadditions stereoselectivity

Nitronates cycloadditions

Nitronates intramolecular

Nitronates intramolecular cycloadditions

Nitronates stereoselectivity

Nitrone cycloaddition intramolecular

Nitrones cycloaddition

Nitrones intramolecular cycloaddition

Nitrones intramolecular cycloadditions

Nitrones, cycloadditions

Stereoselective cycloadditions

© 2024 chempedia.info