Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intracellular AMP

During a myocardial infarction, the oxygen supply to an area of the heart is dramatically reduced, forcing the cardiac myocytes to switch to anaerobic metabolism. Under these conditions, which of the following enzymes would be activated by increasing intracellular AMP ... [Pg.188]

Brovko Y, Romanova NA, Ugarova NN. Bioluminescent assay of bacterial intracellular AMP, ADP and ATP with the use of coimmobilised three-enzyme reagent (adenylate kinase, pyruvate kinase, firefly luciferase). Anal Biochem. 1994 220 410-4. [Pg.534]

Smooth muscle contractions are subject to the actions of hormones and related agents. As shown in Figure 17.32, binding of the hormone epinephrine to smooth muscle receptors activates an intracellular adenylyl cyclase reaction that produces cyclic AMP (cAMP). The cAMP serves to activate a protein kinase that phosphorylates the myosin light chain kinase. The phosphorylated MLCK has a lower affinity for the Ca -calmodulin complex and thus is physiologically inactive. Reversal of this inactivation occurs via myosin light chain kinase phosphatase. [Pg.560]

FIGURE 2.17 Differential efficiency of receptor coupling for cardiac function, (a) Guinea pig left atrial force of contraction (inotropy, open circles) and rate of relaxation (lusitropy, filled circles) as a function (ordinates) of elevated intracellular cyclic AMP concentration (abscissae). Redrawn from [6]. [Pg.31]

Although the 3 - and 5 -polyphosphate derivatives mentioned above exhibit exquisite inhibitory potency these compounds are not cell permeable. To take advantage ofthepotency of such derivatives for studies with intact cells and tissues, there are two possibilities. One is chemically to protect the phosphate groups from exonucleotidases that also allows the compound to transit the membrane intact. The other is to provide a precursor molecule that is cell permeable and is then metabolized into an inhibitor by intracellular enzymes. The general term for such a compound is prodrug nucleotide precursors are also referred to as pronucleotides. Families of protected monophosphate derivatives were synthesized, based on (3-L- and 3-D-2, 5 -dd-3 -AMP, 3-L-2, 3 -dd-5 -AMP, and the acyclic 9-substituted adenines, PMEA and PMPA. Protective substituents were (i) -( -pivaloyl-2-thioethyl) ... [Pg.36]

The steroid hormone 1,25-dihydroxy vitamin D3 (calcitriol) slowly increases both intestinal calcium absorption and bone resorption, and is also stimulated through low calcium levels. In contrast, calcitonin rapidly inhibits osteoclast activity and thus decreases serum calcium levels. Calcitonin is secreted by the clear cells of the thyroid and inhibits osteoclast activity by increasing the intracellular cyclic AMP content via binding to a specific cell surface receptor, thus causing a contraction of the resorbing cell membrane. The biological relevance of calcitonin in human calcium homeostasis is not well established. [Pg.279]

Interaction of the food with the gastric mucosal layer is the normal trigger for gastric cells to release gastrin, which is then carried by the bloodstream to the parietal cells. Calcium ions and cyclic AMP act as intracellular messengers in the transfer of the signal from the receptors to the proton pumps of parietal cells where the acid is generated. [Pg.49]

Cyclic AMP (cAMP) (Figure 18-5) is formed from ATP by adenylyl cyclase at the inner surface of cell membranes and acts as an intracellular second messenger in response to hormones such as epinephrine, norepinephrine, and glucagon. cAMP is hydrolyzed by phosphodiesterase, so terminating hormone action. In hver, insulin increases the activity of phosphodiesterase. [Pg.147]

Cyclic AMP was the first intracellular signal identified in mammalian cells. Several components comprise a system for the generation, degradation, and action of cAMP. [Pg.458]

The general picture of muscle contraction in the heart resembles that of skeletal muscle. Cardiac muscle, like skeletal muscle, is striated and uses the actin-myosin-tropomyosin-troponin system described above. Unlike skeletal muscle, cardiac muscle exhibits intrinsic rhyth-micity, and individual myocytes communicate with each other because of its syncytial nature. The T tubular system is more developed in cardiac muscle, whereas the sarcoplasmic reticulum is less extensive and consequently the intracellular supply of Ca for contraction is less. Cardiac muscle thus relies on extracellular Ca for contraction if isolated cardiac muscle is deprived of Ca, it ceases to beat within approximately 1 minute, whereas skeletal muscle can continue to contract without an extraceUular source of Ca +. Cyclic AMP plays a more prominent role in cardiac than in skeletal muscle. It modulates intracellular levels of Ca through the activation of protein kinases these enzymes phosphorylate various transport proteins in the sarcolemma and sarcoplasmic reticulum and also in the troponin-tropomyosin regulatory complex, affecting intracellular levels of Ca or responses to it. There is a rough correlation between the phosphorylation of Tpl and the increased contraction of cardiac muscle induced by catecholamines. This may account for the inotropic effects (increased contractility) of P-adrenergic compounds on the heart. Some differences among skeletal, cardiac, and smooth muscle are summarized in... [Pg.566]

Adenosine metabolism (Fig. 12.2) is reviewed in Dunwiddie Masino (2001) and Ribeiro et al. (2002). The phosphorylation of intracellular adenosine to AMP is catalyzed by adenosine kinase. Intracellularly, adenosine can also be deami-nated to inosine by adenosine deaminase. Free intracellular adenosine is normally low. Excess adenosine, which cannot be regenerated to ATP, is extruded to the extracellular space by equilibrative nucleoside transporters (ENTs) in the cell membrane. During electrical stimulation or energy depletion, adenosine is... [Pg.343]

Increased extracellular ATP breakdown has been seen in vitro during electrical field stimulation and during hypoxia (Lloyd et al., 1993). Although this source of extracellular adenosine accumulation remains a possibility, it has been found that inhibition of extracellular AMP hydrolysis does not significantly affect adenosine levels (Rosenberg et al., 2000). The main source of adenosine is thus probably intracellular, and possibly related to increased energy consumption. [Pg.346]

Nitric oxide (NO) is an intercellular signaling molecule that can inhibit neuronal energy production (Brorson et al., 1999 Malefic et al., 2004). It has been found that NO donors cause large increases in extracellular adenosine in cultures of forebrain neurons (Rosenberg et al., 2000). These were shown to be caused by NO release, and the accumulation of adenosine was not blocked by probenecid (ENT blocker) or GMP (a blocker of AMP hydrolysis), suggesting that adenosine was likely of intracellular origin. Indeed, it was found that NO donors caused a decrease in intracellular ATP and the inhibition of adenosine kinase activity, possibly due to the rise in adenosine. [Pg.346]

The P-site of adenylyl cyclase inhibits cyclic AMP accumulation. Since P, and P2 receptors are located on the cell surface, they bind purines or pyrimidines in the extracellular space. There also is an adenosine binding site located intracellularly on the enzyme adenylyl cyclase (see Ch. 21). This is referred to as the P-site of adenylyl cyclase. Binding of adenosine and other purines, notably 3 AMP, 2 deoxy-3 -ATP and 2, 5 -dideoxyadenosine to this site, inhibits adenylyl cyclase activity [8]. The P-site of adenylyl cyclase and other intracellular purine binding sites are not classified as purinergic receptors. [Pg.308]

P2Y receptors are activated by adenine and uridine nucleotides. Most of the known P2Y receptors have been detected in the nervous system [21]. The majority of P2Y receptors inhibit neuronal N-type Ca2+ channels and M-type K+ channels. P2Y1 receptors are found exclusively on platelets, on their precursor megakaryocyte cells and on certain other cultured hematopoietic cells, such as K562 leukemia cells. They can be distinguished from other P2 receptors in that ADP is the most potent natural agonist and ATP is a competitive antagonist. ADP acts via a G protein to inhibit cyclic AMP accumulation, mobilize intracellular Ca2+ and stimulate granule secretion. ADP... [Pg.315]


See other pages where Intracellular AMP is mentioned: [Pg.202]    [Pg.398]    [Pg.245]    [Pg.202]    [Pg.261]    [Pg.7]    [Pg.6]    [Pg.216]    [Pg.202]    [Pg.398]    [Pg.245]    [Pg.202]    [Pg.261]    [Pg.7]    [Pg.6]    [Pg.216]    [Pg.171]    [Pg.478]    [Pg.817]    [Pg.24]    [Pg.31]    [Pg.188]    [Pg.282]    [Pg.346]    [Pg.480]    [Pg.866]    [Pg.457]    [Pg.461]    [Pg.17]    [Pg.133]    [Pg.15]    [Pg.259]    [Pg.86]    [Pg.45]    [Pg.261]    [Pg.45]    [Pg.339]    [Pg.291]    [Pg.198]    [Pg.220]    [Pg.304]   
See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.202 ]




SEARCH



5 -AMP

Intracellular cyclic AMP

© 2024 chempedia.info