Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal hydrolysis

In theory, Edman degradations could sequence a peptide of any length. In practice, however, the repeated cycles of degradation cause some internal hydrolysis of the peptide, with loss of sample and accumulation of by-products. After about 30 cycles of degradation, further accurate analysis becomes impossible. A small peptide such as bradykinin can be completely determined by Edman degradation, but larger proteins must be broken into smaller fragments (Section 24-9E) before they can be completely sequenced. [Pg.1180]

The compound (III) can however lose ethanol by an internal Claisen ester condensation (p. 264) to give the cyclohexane derivative (IV), which, being the ester of a (3-keto acid, in turn readily undergoes hydrolysis and decarboxylation to give 5,5Hiimethyl cyclohexan-i,3Hiione (V) or Dimedone, a valuable reagent for the detection and estimation of formaldehyde. [Pg.278]

The yield of iso-propylbenzene is influenced considerably by the quality of the anhydrous aluminium chloride employed. It Is recommended that a good grade of technical material be purchase in small bottles containing not more than 100 g. each undue exposure to the atmosphere, which results in some hydrolysis, is thus avoided. Sealed bottles containing the reagent sometimes have a high internal pressure they should be wrapped in a dry cloth and opened with care. [Pg.512]

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

Several side reactions or post-cuting reactions are possible. Disproportionation reactions involving terminal hydride groups have been reported (169). Excess SiH may undergo hydrolysis and further reaction between silanols can occur (170—172). Isomerization of a terminal olefin to a less reactive internal olefin has been noted (169). Viaylsilane/hydride interchange reactions have been observed (165). [Pg.48]

Aqueous sulfamic acid solutions are quite stable at room temperature. At higher temperatures, however, acidic solutions and the ammonium salt hydroly2e to sulfates. Rates increase rapidly with temperature elevation, lower pH, and increased concentrations. These hydrolysis reactions are exothermic. Concentrated solutions heated in closed containers or in vessels having adequate venting can generate sufficient internal pressure to cause container mpture. An ammonium sulfamate, 60 wt % aqueous solution exhibits mnaway hydrolysis when heated to 200°C at pH 5 or to 130°C at pH 2. The danger is minimised in a weU-vented container, however, because the 60 wt % solution boils at 107°C (8,10). Hydrolysis reactions are ... [Pg.61]

Bismuth subnitrate [1304-85-4] (basic bismuth nitrate) can be prepared by the partial hydrolysis of the normal nitrate with boiling water. It has been used as an antacid and in combination with iodoform as a wound dressing (183). Taken internally, the subnitrate may cause fatal nitrite poisoning because of the reduction of the nitrate ion by intestinal bacteria. [Pg.135]

If chlorides are present internally, acidity increases due to hydrolysis ... [Pg.42]

Much interesting work has been done in the last ten years on the bridging of pyrrole and piperidine rings. Early in their work on this subject Clemo and Metcalfe (1937) prepared quinuclidine (V) by the reduction of 3-ketoquinuclidine (IV), the latter resulting from the hydrolysis and decarboxylation of the product (III) of a Dieckmann internal alkylation, applied to ethyl piperidine-l-acetate-4-carboxylate (II), itself made by condensing ethyl piperidine-4-carboxylate (I) with ethyl chloroacetate. [Pg.455]

In the case of oligonucleotides, the phosphate has been shown to increase the rate of formic-acid-induced TBDMS hydrolysis by internal phosphate participation. ... [Pg.137]

The Ciamician-Dennstedt reaction can be thought of as the complement to the Reimer-Tiemann reaction (Scheme 8.3.2). The first step of both reactions is cyclopropanation of one of the carbon-carbon double bonds of a pyrrole with a dichlorocarbene, resulting in intermediate 3. The Ciamician-Dennstedt reaction results from cleavage of the internal C-C bond and elimination of chloride (path a), while the Reimer-Tiemann reaction results from cleavage of the exocyclic bond, and subsequent hydrolysis of the dichloromethyl moiety to furnish aldehyde 5 (path b). [Pg.350]

Cyclization of the two pendant alkyl side chains on barbiturates to form a spiran is consistent with sedative-hypnotic activity. The synthesis of this most complex barbiturate starts by alkylation of ethyl acetoacetate with 2-chloropentan-3-one to give 152. Hydrolysis and decarboxylation under acidic conditions gives the diketone, 153. This intermediate is then reduced to the diol (154), and that is converted to the dibromide (155) by means of hydrogen bromide. Double Internal alkylation of ethyl... [Pg.275]

As in the case of the steroids, introduction of additional nuclear substituents yields morphine analogs of increased potency. The more important of these are derived from one of the minor alkaloids that occur in opium. Thebaine (14), present in crude opium in about one-tenth the amount of morphine, exhibits a reactive internal diene system that is well known to undergo various addition reactions in a 1,4 manner (e.g., bromination). Thus, reaction with hydrogen peroxide in acid may be visualized to afford first the 14-hydroxy-6-hemiketal (15). Hydrolysis yields the isolated unsaturated ketone (16). Catalytic reduction... [Pg.289]


See other pages where Internal hydrolysis is mentioned: [Pg.56]    [Pg.82]    [Pg.187]    [Pg.6]    [Pg.109]    [Pg.79]    [Pg.160]    [Pg.561]    [Pg.185]    [Pg.185]    [Pg.56]    [Pg.82]    [Pg.187]    [Pg.6]    [Pg.109]    [Pg.79]    [Pg.160]    [Pg.561]    [Pg.185]    [Pg.185]    [Pg.289]    [Pg.423]    [Pg.310]    [Pg.396]    [Pg.353]    [Pg.536]    [Pg.80]    [Pg.71]    [Pg.282]    [Pg.90]    [Pg.355]    [Pg.409]    [Pg.46]    [Pg.165]    [Pg.179]    [Pg.103]    [Pg.348]    [Pg.79]    [Pg.226]    [Pg.100]    [Pg.130]    [Pg.778]   
See also in sourсe #XX -- [ Pg.185 ]

See also in sourсe #XX -- [ Pg.185 ]




SEARCH



© 2024 chempedia.info