Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular reactions oxidative addition complex

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

A related dinuclear species 77, recently described, constitutes the first dinuclear gold(I) complex with heterobridged phosphor-1,1 -dithiolato moieties and bis(ylide) bridging ligands [ 102]. It is obtained by reaction between [ AuS2PPh2] and the diylide gold complex 74 (R=Me). No intermolecular Au-Au interaction is observed in 77 but the oxidative addition of chlorine to the product leads to a new complex 78 in which a single bond is formed between the two Au(II) centers (Scheme 26). [Pg.61]

A rationale for the cz s-selective cyclization for the intramolecular homoal-lylation of oo-dienyl aldehyde 64 is illustrated in Scheme 16. The scenario is essentially the same as the one proposed for the intermolecular reaction, and a Ni(0) species undergoes oxidative addition upon the diene and the aldehyde moieties through a conformation placing the aldehyde substituent and the diene anti to each other. An intermediate 66 undergoes (>-II elimination and czs-reductive elimination of the thus-formed Ni - H complex to produce 65. [Pg.208]

Attempts to employ allenes in palladium-catalyzed oxidations have so far given dimeric products via jr al lyI complexes of type 7i62.63. The fact that only very little 1,2-addition product is formed via nucleophilic attack on jral ly I complex 69 indicates that the kinetic chloropalladation intermediate is 70. Although formation of 70 is reversible, it is trapped by the excess of allene present in the catalytic reaction to give dimeric products. The only reported example of a selective intermolecular 1,2-addition to allenes is the carbonylation given in equation 31, which is a stoichiometric oxidation64. [Pg.678]

These findings have stimulated enormously the search for intermolecular activation of C-H bonds, in particular those of unsubstituted arenes and alkanes. In 1982 Bergman [2] and Graham [3] reported on the reaction of well-defined complexes with alkanes and arenes in a controlled manner. It was realised that the oxidative addition of alkanes to electron-rich metal complexes could be thermodynamically forbidden as the loss of a ligand and rupture of the C-H bond might be as much as 480 kl.mol, and the gain in M-H and M-C... [Pg.389]

Examples of catalytic formation of C-C bonds from sp C-H bonds are even more scarce than from sp C-H bonds and, in general, are limited to C-H bonds adjacent to heteroatoms. A remarkable iridium-catalyzed example was reported by the group of Lin [116] the intermolecular oxidative coupling of methyl ethers with TBE to form olefin complexes in the presence of (P Pr3)2lrH5 (29). In their proposed mechanism, the reactive 14e species 38 undergoes oxidative addition of the methyl C-H bond in methyl ethers followed by olefin insertion to generate the intermediate 39. p-hydride elimination affords 35, which can isomerize to products 36 and 37 (Scheme 10). The reaction proceeds under mild condition (50°C) but suffers from poor selectivity as well as low yield (TON of 12 after 24 h). [Pg.159]

Intermolecular oxygen atom transfer from a metal complex to an organic substrate is an archetypical reaction step in oxidation catalysis. As the transformation of O2 into metal 0x0 groups by oxidative addition is a well-precedented process (Sect. 2.2), its combination with transfer of the oxygen atom to an oxidizable substrate ( S ) constitutes a catalytic cycle for aerobic oxidations (Eq. 21). Examples of such cycles exist in organometallic chemistry, by virtue of 0x0 complexes with carbon-based ancillary hgands. [Pg.131]

Considerable use has also been made of allyl carbonates as substrates for the allylation of Pd enolates.9 The reaction of Pd° complexes with allyl enol carbonates119,120 proceeds by initial oxidative addition into the allylic C—O bond of the carbonate followed by decarboxylation, yielding an allylpalladium enolate, which subsequently produces Pd° and the allylated ketone (equation 22). In like fashion, except now in an intermolecular sense, allyl carbonates have been found to allylate enol silyl ethers (equation 23),121 enol acetates (with MeOSnBu3 as cocatalyst) (equation 24),122 ketene silyl acetals (equation 25)123 and anions a to nitro, cyano, sulfonyl and keto groups.115,124 In these cases, the alkoxy moiety liberated from the carbonate on decarboxylation serves as the key reagent in generating the Pd enolate. [Pg.592]

Oxidative cyclization is another type of oxidative addition without bond cleavage. Two molecules of ethylene undergo transition metal-catalysed addition. The intermolecular reaction is initiated by 7i-complexation of the two double bonds, followed by cyclization to form the metallacyclopentane 12. This is called oxidative cyclization. The oxidative cyclization of the a,co-diene 13 affords the metallacyclopentane 14, which undergoes further transformations. Similarly, the oxidative cyclization of the a,co-enyne 15 affords the metallacyclopentene 16. Formation of the five-membered ring 18 occurs stepwise (12, 14 and 16 likewise) and can be understood by the formation of the metallacyclopropene or metallacyclopropane 17. Then the insertion of alkyne or alkene to the three-membered ring 17 produces the metallacyclopentadiene or metallacyclopentane 18. [Pg.12]

Equation (1) depicts an early example of an intermolecular addition of an alkane C-H bond to a low valent transition metal complex [12], Mechanistic investigations provided strong evidence that these reactions occur via concerted oxidative addition wherein the metal activates the C-H bond directly by formation of the dative bond, followed by formation of an alkylmetal hydride as the product (Boxl). Considering the overall low reactivity of alkanes, transition metals were able to make the C-H bonds more reactive or activate them via a new process. Many in the modern organometallic community equated C-H bond activation with the concerted oxidative addition mechanism [10b,c]. [Pg.9]

The gas-phase reactions of the cationic Irm complexes follow a previously unreported mechanism for their observed a-bond metathesis reactions. Previous discussions had considered a two-step mechanism involving intermolecular oxidative addition of either [Cp Ir(PMe3)(CH3)]+ or [CpIr(PMe3)(CH3)]+ to the C-H bond of an alkane or arene producing an Irv intermediate, followed by reductive elimination of methane, or a concerted a-bond metathesis reaction sim-... [Pg.172]

The corresponding hydrido/alkyl (and aryl) complexes v-[RuHR(L-L), ] (L-L = dppe, dppm, dmpe R = Me, Et, Ph) are readily prepared from m-[RuClR(L-L)2] and Li[AlH4]1659 whereas treatment of cis- or tvans-[RuCl2 (dmpe)2 ] with arene radical anions affords d.v-[RuH(f 1-aryl)(dmpe)2] (aryl = phenyl, 2-naphthyl, anthryl, phenanthryl).1389 In solution, these compounds are in tautomeric equilibria with significant concentrations of Ru° complexes (e.g. equation 148) although X-ray analysis for aryl = 2-naphthyl confirms the presence of the six-coordinate Ru" species (373) in the solid state.2459 Some reactions of (373) with various substrates to produce other hydrido complexes are shown in Scheme 74.44>24m Note that the compound of empirical formula [ Ru(dmpe)2 ] obtained by pyrolysis of [RuH(2-np)(dmpe)2] (reaction (iv) Scheme 74) is a binuclear Ru" hydrido complex, resulting from intermolecular oxidative addition of methyl groups to ruthenium.1390... [Pg.453]

Intermolecular oxidative addition of H—C usually involves activated H—C bonds. The weak acid HCN reacts with transition-metal complexes e.g., HCN and NiL lead to the hydride complexes HNi(CN)Lj (L = various phosphorus ligands). The versatile complex IrCl(CO)(PPh3)j adds HCN cleanly in CH Clj at RT to form HIr(CN)(Cl(PPhj)2. The zero-valent complexes Pt(PPhj) or Pt(PPh3)3 also add HCN to yield HPt(CN)(PPh3)j. Reactions of HMNp(dmpe)j (M = Fe, Ru, Os Np = 2-naphthyl dmpe = Me PCH CH PMej) with HCN and terminal acetylenes give HMR(dmpe)2 that contain new M—C bonds (R = — CN, — CjR ) . [Pg.375]

One other example of alkane oxidative addition to a higher oxidation state late transition metal has been reported by Goldberg. Reaction of the trispyra-zolylborate complex K[r 2-Tp PtMe2] with B(C6F5)3 leads to the abstraction of a methyl anion and the formation of a transient species that adds to the C-H bonds of benzene, pentane, or cyclohexane (Eq. 15). This result provides the first example of the intermolecular addition of a C-H bond to a Ptn species to give a stable PtIV product [71]. Earlier work by Templeton had demonstrated that the trispyrazolylborateplatinumdialkylhydride product would be stable [72]. [Pg.29]

The reaction leading to the new Pt(II) complex in the case X = F, H, proceeds probably through a sequence of oxidative addition and subsequent reductive elimination. The same sequence gives C-C bond formation in intermolecular oxidative addition reactions (TOA) with Pd(II) complexes [40]. The corresponding POA leads to complete dissociation of the C-bonded ligand (see below). [Pg.17]

Other multistep reactions may be initiated by intermolecular oxidative additions. For example, Ir complexes react with cyclopentane at 80°C to give the cyclopentadienyl complex in 40% yield . [Pg.479]

It has been suggested that intermolecular incorporation, i.e. oxidative addition and complexation of a substrate by a metal should be favored, intramolecular reactions, i.e. insertion, migration and deinsertion reactions should be invariant, and extmsion reactions such as reductive elimination or decomplexation should be disfavored by pressure [13], However, decomplexation reactions are in most cases ligand exchange reactions, which can proceed by associative mechanisms, and indeed, there is ample evidence that ligand exchange reactions can be accelerated by pressure [2]. [Pg.230]

Ru(dmpe)2 ] obtained by pyrolysis of [RuH(2-np)(dmpe)2] (reaction (iv) Scheme 74) is a binuclear Ru" hydrido complex, resulting from intermolecular oxidative addition of methyl groups to ruthenium. [Pg.453]


See other pages where Intermolecular reactions oxidative addition complex is mentioned: [Pg.378]    [Pg.2]    [Pg.468]    [Pg.225]    [Pg.146]    [Pg.385]    [Pg.413]    [Pg.364]    [Pg.351]    [Pg.9]    [Pg.149]    [Pg.146]    [Pg.253]    [Pg.163]    [Pg.175]    [Pg.116]    [Pg.281]    [Pg.367]    [Pg.4087]    [Pg.4087]    [Pg.346]    [Pg.334]    [Pg.245]    [Pg.185]    [Pg.375]    [Pg.255]    [Pg.335]    [Pg.4086]    [Pg.4086]    [Pg.240]    [Pg.367]   


SEARCH



Addition reactions complexes

Addition-oxidation reactions

Complexing additives

Intermolecular addition reactions

Intermolecular additions

Intermolecular complexation

Intermolecular complexes

Oxidation oxidative addition reaction

Oxidative addition complexes

Oxidative addition reactions

© 2024 chempedia.info