Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interlamellar

The reaction of iodobenzene with acrylate is a good synthetic method for the cinnamate 17[7]. In the competitive reaction of acrylate with a mixture of 0-and /i-iodoanisoles (18 and 19), the o-methoxycinnamate 20 was obtained selectively owing to the molecular recognition by interlamellar montmorillonite ethylsilyldiphenylphosphine (L) as a heterogenized homogeneous catalyst used as a ligand[28]. [Pg.130]

Vinyl acetate reacts with the alkenyl triflate 65 at the /3-carbon to give the 1-acetoxy-1,3-diene 66[68]. However, the reaction of vinyl acetate with 5-iodo-pyrimidine affords 5-vinylpyrimidine with elimination of the acetoxy group[69]. Also stilbene (67) was obtained by the reaction of an excess of vinyl acetate with iodobenzene when interlamellar montmorillonite ethylsilyl-diphenylphosphine (L) palladium chloride was used as an active catalyst[70]. Commonly used PdCl2(Ph3P)2 does not give stilbene. [Pg.138]

Hydrophobic interactions and trapping of molecules in a molecular sieve formed by humic materials have been hypothesized as retention mechanisms for prometryn. It has been shown that fluridone, fluazifop, and bipyridyhum herbicides penetrate into interlamellar spaces of smectites and can become trapped. [Pg.221]

Figure 8.6. A diagrammatic view of a semicrystalline polymer showing both chain folding and interlamellar entanglements. The lamellae are 5-50 nm thick (after Windle 1996). Figure 8.6. A diagrammatic view of a semicrystalline polymer showing both chain folding and interlamellar entanglements. The lamellae are 5-50 nm thick (after Windle 1996).
The formation of the microstructure involves the folding of linear segments of polymer chains in an orderly manner to form a crystalline lamellae, which tends to organize into a spherulite structure. The SCB hinder the formation of spherulite. However, the volume of spherulite/axialites increases if the branched segments participate in their formation [59]. Heterogeneity due to MW and SCB leads to segregation of PE molecules on solidification [59-65], The low MW species are accumulated in the peripheral parts of the spherulite/axialites [63]. The low-MW segregated material is brittle due to a low concentration of interlamellar tie chains [65] and... [Pg.284]

Mechanical properties, such as elastic modulus and yield point, that depend on crystallinity per se are not seriously affected by low to moderate doses of ionizing radiation. On the other hand, those mechanical properties that are sensitive to interlamellar activity are most dramatically affected by the low to moderate radiation doses. This is seen in the ultimate tensile strength and elongation at failure of the polyolefins. It is also reflected in the large change in melt index between 0 and 18 Mrad, which indicates formation of cross-links that increase with increasing... [Pg.98]

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]

These protons may then catalyse certain Bronsted reactions. One particularly effective interlamellar cation is known to be Al ( ) ... [Pg.475]

The balance between those molecules which are protonated and those which are not has emerged as an inportant function in determining the course of any reaction occurring within the Interlamellar region. One carefully studied reaction is that of the elimination of ammonia from amines (21), a reaction proceeding by two sinple steps... [Pg.476]

Dimerization of unsaturated fatty acids, to. so-called dimer acids, is widely practised in industry, where acid-treated clays are invariably used as a catalyst. In the case of oleic acid the major products are dimers, trimers, and isosteric acid. Koster et al. (1998) have investigated the relative importance of the various acid sites as well as structural and textural parameters of montmorrilonite. The interlamellar space dominates the oleic acid dimerization and the active site is the tetrahedrol substitution site. [Pg.137]

The crystal structure of zinc phenylphosphonate was solved and demonstrated the anticipated layer structure with the phenyl rings occupying the interlamellar space.409 The structure of zinc ethylphosphonate and (2-aminoethyl)phosphonate both show four-coordinate zinc centers in contrast to the coordination number of six in the phenylphosphonate compound.410... [Pg.1180]

The intercalated catalysts can often be regarded as biomimetic oxidation catalysts. The intercalation of cationic metal complexes in the interlamellar space of clays often leads to increased catalytic activity and selectivity, due to the limited orientations by which the molecules are forced to accommodate themselves between sheets. The clays have electrostatic fields in their interlayer therefore, the intercalated metal complexes are more positively charged. Such complexes may show different behavior. For example, cationic Rh complexes catalyze the regioselective hydrogenation of carbonyl groups, whereas neutral complexes are not active.149 Cis-Alkenes are hydrogenated preferentially on bipyridyl-Pd(II) acetate intercalated in montmorillonite.150 The same catalyst was also used for the reduction of nitrobenzene.151... [Pg.258]

The catalytic application of clays is related closely to their swelling properties. Appropriate swelling enables the reactant to enter the interlamellar region. The ion exchange is usually performed in aquatic media because the swelling of clays in organic solvents, and thus the expansion of the interlayer space, is limited and it makes it difficult for a bulky metal complex to penetrate between the layers. Nonaqueous intercalation of montmorillonite with a water-sensitive multinuclear manganese complex was achieved, however, with the use of nitromethane as solvent.139 The complex cation is intercalated parallel to the sheets. [Pg.259]

When organic cations (e.g., cationic tensides) are employed, clay organo-complexes are formed, which can be used in organic solvents. A Pd-hexadecy-lammonium montmorillonite catalyst was prepared by the reduction of Pd(OAc)2 by ethanol in the interlamellar space. At small ethanol concentrations in toluene, selective interlamellar sorption of ethanol was established consequently, the reduction also occurred only in the interlamellar space.160 The catalyst was used for the hydrogenation of alkenes.161... [Pg.259]

Sonawane et al. [90] investigated the affect of ultrasound and nanoclay for the adsorption of phenol. Three types of nanoclay tetrabutyl ammonium chloride (TBAC), N-acetyl-N,N,N trimethyl ammonium bromide (CTAB) and hexadecyl trimethyl ammonium chloride (HDTMA), modified under sonication, were synthesized which showed healthier adsorption of phenol within only 10 min in waste water. The interlamellar spacing of all the three clay increased due to incorporation of long chain quaternary salts under cavitational effect. [Pg.293]

The DLAM frequency of random copolymers of ethylene behaves in a different manner [103]. For these copolymers ethyl and longer branches are excluded from the crystal region. The branches accumulate in the interlamellar... [Pg.267]

Figure 21 Plot of thickness values as a function of molecular weight for linear polyethylene fractions quenched to —78°C. (A), crystallite thickness, Lc (O), interlamellar thickness, La ( ), interfacial thickness, Lb. Reprinted with permission from Ref. [277]. Copyright 1990 American Chemical Society. Figure 21 Plot of thickness values as a function of molecular weight for linear polyethylene fractions quenched to —78°C. (A), crystallite thickness, Lc (O), interlamellar thickness, La ( ), interfacial thickness, Lb. Reprinted with permission from Ref. [277]. Copyright 1990 American Chemical Society.

See other pages where Interlamellar is mentioned: [Pg.1409]    [Pg.242]    [Pg.312]    [Pg.318]    [Pg.236]    [Pg.395]    [Pg.65]    [Pg.470]    [Pg.471]    [Pg.472]    [Pg.474]    [Pg.491]    [Pg.494]    [Pg.13]    [Pg.66]    [Pg.120]    [Pg.124]    [Pg.132]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.138]    [Pg.142]    [Pg.146]    [Pg.32]    [Pg.174]    [Pg.261]    [Pg.478]    [Pg.345]    [Pg.256]    [Pg.267]    [Pg.268]    [Pg.269]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.295 , Pg.297 , Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.306 , Pg.307 , Pg.312 , Pg.313 , Pg.315 , Pg.332 , Pg.356 , Pg.364 , Pg.365 , Pg.402 , Pg.434 ]




SEARCH



Anionic clays interlamellar domains

Anionic clays interlamellar space

Connections, interlamellar (

Interlamellar amorphous model

Interlamellar amorphous regions

Interlamellar attachment

Interlamellar cavitation

Interlamellar distance

Interlamellar domain

Interlamellar link

Interlamellar material

Interlamellar region

Interlamellar shear

Interlamellar slip

Interlamellar sorption

Interlamellar space

Interlamellar spacing

Interlamellar thickness

Interlamellar tie chains

Interlamellar ties

Interlamellar water

Lamellar/interlamellar composites

Noncrystalline interlamellar material

Nonfreezable interlamellar

© 2024 chempedia.info